首页> 外文OA文献 >Multi-task learning deep neural networks for speech feature denoising
【2h】

Multi-task learning deep neural networks for speech feature denoising

机译:多任务学习深度神经网络的语音特征去噪

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Traditional automatic speech recognition (ASR) systems usuallyget a sharp performance drop when noise presents inspeech. To make a robust ASR, we introduce a new model usingthe multi-task learning deep neural networks (MTL-DNN)to solve the speech denoising task in feature level. In this model,the networks are initialized by pre-training restricted Boltzmannmachines (RBM) and fine-tuned by jointly learning multipleinteractive tasks using a shared representation. In multi-tasklearning, we choose a noisy-clean speech pair fitting task as theprimary task and separately explore two constraints as the secondarytasks: phone label and phone cluster. In experiments,the denoised speech is reconstructed by the MTL-DNN usingthe noisy speech as input and it is respectively evaluated by theDNN-hidden Markov model (HMM) based and the GaussianMixture Model (GMM)-HMM based ASR systems. Resultsshow that, using the denoised speech, the word error rate (WER)is respectively reduced by 53.14% and 34.84% compared withbaselines. The MTL-DNN model also outperforms the generalsingle-task learning deep neural networks (STL-DNN) modelwith a performance improvement of 4.93% and 3.88% respectively.
机译:当出现噪音时,传统的自动语音识别(ASR)系统通常会导致性能急剧下降。为了制作鲁棒的ASR,我们引入了一种使用多任务学习深度神经网络(MTL-DNN)的新模型来解决特征级的语音去噪任务。在该模型中,通过预训练受限的玻尔兹曼机(RBM)初始化网络,并通过使用共享表示共同学习多个交互式任务来进行微调。在多任务学习中,我们选择一个噪声干净的语音对拟合任务作为主要任务,并分别探索两个约束作为次要任务:电话标签和电话集群。在实验中,去噪语音由MTL-DNN以嘈杂语音作为输入进行重构,并分别通过基于DNN-隐马尔可夫模型(HMM)和基于高斯混合模型(GMM)-HMM的ASR系统进行评估。结果表明,使用降噪语音后,与基线相比,误码率(WER)分别降低了53.14%和34.84%。 MTL-DNN模型也优于一般单任务学习深度神经网络(STL-DNN)模型,性能分别提高了4.93%和3.88%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号