首页> 外文OA文献 >Local search with edge weighting and configuration checking heuristics for minimum vertex cover
【2h】

Local search with edge weighting and configuration checking heuristics for minimum vertex cover

机译:具有边缘权重和配置检查启发式功能的本地搜索,以最小化顶点覆盖

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Minimum Vertex Cover (MVC) problem is a well-known combinatorial optimization problem of great importance in theory and applications. In recent years, local search has been shown to be an effective and promising approach to solve hard problems, such as MVC. In this paper, we introduce two new local search algorithms for MVC, called EWLS (Edge Weighting Local Search) and EWCC (Edge Weighting Configuration Checking). The first algorithm EWLS is an iterated local search algorithm that works with a partial vertex cover, and utilizes an edge weighting scheme which updates edge weights when getting stuck in local optima. Nevertheless, EWLS has an instance-dependent parameter. Further, we propose a strategy called Configuration Checking for handling the cycling problem in local search. This is used in designing a more efficient algorithm that has no instance-dependent parameters, which is referred to as EWCC. Unlike previous vertex-based heuristics, the configuration checking strategy considers the induced subgraph configurations when selecting a vertex to add into the current candidate solution. A detailed experimental study is carried out using the well-known DIMACS and BHOSLIB benchmarks. The experimental results conclude that EWLS and EWCC are largely competitive on DIMACS benchmarks, where they outperform other current best heuristic algorithms on most hard instances, and dominate on the hard random BHOSLIB benchmarks. Moreover, EWCC makes a significant improvement over EWLS, while both EWLS and EWCC set a new record on a twenty-year challenge instance. Further, EWCC performs quite well even on structured instances in comparison to the best exact algorithm we know. We also study the run-time behavior of EWLS and EWCC which shows interesting properties of both algorithms.
机译:最小顶点覆盖(MVC)问题是众所周知的组合优化问题,在理论和应用中都非常重要。近年来,本地搜索已被证明是解决诸如MVC之类的难题的有效且有前途的方法。在本文中,我们为MVC引入了两种新的本地搜索算法,称为EWLS(边缘加权本地搜索)和EWCC(边缘加权配置检查)。第一种算法EWLS是一种迭代局部搜索算法,可与部分顶点覆盖配合使用,并利用边缘加权方案,当陷入局部最优状态时会更新边缘权重。但是,EWLS具有实例相关的参数。此外,我们提出了一种称为配置检查的策略,用于处理本地搜索中的循环问题。这用于设计没有实例相关参数的更有效算法,称为EWCC。与以前的基于顶点的启发式方法不同,配置检查策略在选择要添加到当前候选解决方案中的顶点时会考虑诱导子图配置。使用众所周知的DIMACS和BHOSLIB基准进行了详细的实验研究。实验结果表明,EWLS和EWCC在DIMACS基准上具有很大的竞争力,在多数硬实例上,它们优于其他当前最佳启发式算法,并在硬随机BHOSLIB基准上占优势。此外,EWCC比EWLS有了重大改进,而EWLS和EWCC都在二十年的挑战赛中创下了新纪录。此外,与我们所知的最佳精确算法相比,EWCC甚至在结构化实例上也表现出色。我们还研究了EWLS和EWCC的运行时行为,这些行为显示了两种算法的有趣特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号