首页> 外文OA文献 >Scalable and Fast Top-k Most Similar Trajectories Search Using MapReduce In-Memory
【2h】

Scalable and Fast Top-k Most Similar Trajectories Search Using MapReduce In-Memory

机译:使用MapReduce内存可扩展且快速的top-k最相似轨迹搜索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Top-k most similar trajectories search (k-NN) is frequently used as classification algorithm and recommendation systems in spatial-temporal trajectory databases. However, k-NN trajectories is a complex operation, and a multi-user application should be able to process multiple k-NN trajectories search concurrently in large-scale data in an efficient manner. The k-NN trajectories problem has received plenty of attention, however, state-of-the-art works neither consider in-memory parallel processing of k-NN trajectories nor concurrent queries in distributed environments, or consider parallelization of k-NN search for simpler spatial objects (i.e. 2D points) using MapReduce, but ignore the temporal dimension of spatial-temporal trajectories. In this work we propose a distributed parallel approach for k-NN trajectories search in a multi-user environment using MapReduce in-memory. We propose a space/time data partitioning based on Voronoi diagrams and time pages, named Voronoi Pages, in order to provide both spatial-temporal data organization and process decentralization. In addition, we propose a spatial-temporal index for our partitions to efficiently prune the search space, improve system throughput and scalability. We implemented our solution on top of Spark’s RDD data structure, which provides a thread-safe environment for concurrent MapReduce tasks in main-memory. We perform extensive experiments to demonstrate the performance and scalability of our approach.
机译:前k个最相似的轨迹搜索(k-NN)通常用作时空轨迹数据库中的分类算法和推荐系统。然而,k-NN轨迹是一个复杂的操作,并且多用户应用程序应该能够以有效的方式在大规模数据中同时处理多个k-NN轨迹搜索。 k-NN轨迹问题已引起广泛关注,但是,现有技术既不考虑k-NN轨迹的内存并行处理也不考虑分布式环境中的并发查询,也没有考虑将k-NN搜索并行化使用MapReduce比较简单的空间对象(即2D点),但忽略了时空轨迹的时间维。在这项工作中,我们提出了使用MapReduce内存在多用户环境中进行k-NN轨迹搜索的分布式并行方法。我们提议基于Voronoi图和时间页(称为Voronoi页)进行时空数据分区,以便同时提供时空数据组织和流程分散。此外,我们为分区提出了一个时空索引,以有效地修剪搜索空间,提高系统吞吐量和可伸缩性。我们在Spark的RDD数据结构之上实施了我们的解决方案,该结构为主内存中的并发MapReduce任务提供了线程安全的环境。我们进行了广泛的实验,以证明我们方法的性能和可扩展性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号