首页> 外文OA文献 >Mixing Energy Models in Genetic Algorithms for On-Lattice Protein Structure Prediction
【2h】

Mixing Energy Models in Genetic Algorithms for On-Lattice Protein Structure Prediction

机译:遗传算法中晶格蛋白质结构预测的混合能量模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein structure prediction (PSP) is computationally a very challenging problem. The challenge largely comes from the fact that the energy function that needs to be minimised in order to obtain the native structure of a given protein is not clearly known. A high resolution 20x20 energy model could better capture the behaviour of the actual energy function than a low resolution energy model such as hydrophobic polar. However, the fine grained details of the high resolution interaction energy matrix are often not very informative for guiding the search. In contrast, a low resolution energy model could effectively bias the search towards certain promising directions. In this paper, we develop a genetic algorithm that mainly uses a high resolution energy model for protein structure evaluation but uses a low resolution HP energy model in focussing the search towards exploring structures that have hydrophobic cores. We experimentally show that this mixing of energy models leads to significant lower energy structures compared to the state-of-the-art results.
机译:蛋白质结构预测(PSP)在计算上是一个非常具有挑战性的问题。挑战主要来自以下事实:尚未清楚需要最小化以获得给定蛋白质天然结构的能量功能。与低分辨率能量模型(例如疏水极性)相比,高分辨率20x20能量模型可以更好地捕获实际能量函数的行为。但是,高分辨率相互作用能矩阵的细粒度细节通常不足以指导搜索。相反,低分辨率能量模型可以有效地将搜索偏向某些有希望的方向。在本文中,我们开发了一种遗传算法,该算法主要使用高分辨率能量模型进行蛋白质结构评估,但使用低分辨率HP能量模型将重点放在探索具有疏水性核心的结构上。我们实验证明,与最新结果相比,这种能量模型混合可显着降低能源结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号