首页> 外文OA文献 >SPINE-D: Accurate Prediction of Short and Long Disordered Regions by a Single Neural-Network Based Method
【2h】

SPINE-D: Accurate Prediction of Short and Long Disordered Regions by a Single Neural-Network Based Method

机译:SPINE-D:通过基于单个神经网络的方法准确预测短时和长时无序区域

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Short and long disordered regions of proteins have different preference for different amino acid residues. Different methods often have to be trained to predict them separately. In this study, we developed a single neural-network-based technique called SPINE-D that makes a three-state prediction first (ordered residues and disordered residues in short and long disordered regions) and reduces it into a two-state prediction afterwards. SPINE-D was tested on various sets composed of different combinations of Disprot annotated proteins and proteins directly from the PDB annotated for disorder by missing coordinates in X-ray determined structures. While disorder annotations are different according to Disprot and X-ray approaches, SPINE-D's prediction accuracy and ability to predict disorder are relatively independent of how the method was trained and what type of annotation was employed but strongly depend on the balance in the relative populations of ordered and disordered residues in short and long disordered regions in the test set. With greater than 85% overall specificity for detecting residues in both short and long disordered regions, the residues in long disordered regions are easier to predict at 81% sensitivity in a balanced test dataset with 56.5% ordered residues but more challenging (at 65% sensitivity) in a test dataset with 90% ordered residues. Compared to eleven other methods, SPINE-D yields the highest area under the curve (AUC), the highest Mathews correlation coefficient for residue-based prediction, and the lowest mean square error in predicting disorder contents of proteins for an independent test set with 329 proteins. In particular, SPINE-D is comparable to a meta predictor in predicting disordered residues in long disordered regions and superior in short disordered regions. SPINE-D participated in CASP 9 blind prediction and is one of the top servers according to the official ranking. In addition, SPINE-D was examined for prediction of functional molecular recognition motifs in several case studies.
机译:蛋白质的短和长无序区对不同的氨基酸残基具有不同的偏好。通常必须训练不同的方法来分别预测它们。在这项研究中,我们开发了一种基于单一神经网络的技术,称为SPINE-D,该技术首先进行三态预测(在短和长无序区域中的有序残基和无序残基),然后将其还原为两态预测。在由Disprot注释的蛋白质和直接来自PDB的蛋白质的不同组合组成的各种集合上测试了SPINE-D,这些蛋白质由于X射线确定的结构中缺少坐标而被注释为无序。尽管根据Disprot和X射线方法对疾病的注释不同,但是SPINE-D的预测准确性和预测疾病的能力相对独立于方法的训练方式和采用哪种类型的注释,但在很大程度上取决于相对人群的平衡测试集中短和长无序区域中有序和无序的残基的分布。在短时和长时无序区域中检测残留物的总体特异性均高于85%,在具有56.5%有序残基的平衡测试数据集中,长时无序区域中的残基更易于预测,灵敏度为81%,但更具挑战性(灵敏度为65%) )在具有90%有序残基的测试数据集中。与其他11种方法相比,对于使用329的独立测试集,对于基于残基的预测,SPINE-D产生的曲线下面积(AUC)最高,最高Mathews相关系数,并且在预测蛋白质异常含量方面的最低均方误差蛋白质。特别地,在预测长的无序区域中的无序残基和短的无序区域中的预兆方面,SPINE-D可比拟元预测器。 SPINE-D参加了CASP 9盲预测,并且是官方排名中排名最高的服务器之一。另外,在一些案例研究中,对SPINE-D进行了功能分子识别基序预测的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号