首页> 外文OA文献 >Analysis of the saturated electromagnetic devices under DC bias condition by the decomposed harmonic balance finite element method
【2h】

Analysis of the saturated electromagnetic devices under DC bias condition by the decomposed harmonic balance finite element method

机译:直流偏置条件下饱和电磁装置的谐波分解分解有限元分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose - This paper aims to introduce the decomposed harmonic balance finite element method (HBFEM) to decrease the memory requirement in large-scale computation of the DC-biasing magnetic field. Harmonic analysis of the flux density and flux distribution was carried out to investigate the DC biased problem in a laminated core model (LCM). Design/methodology/approach - Based on the DC bias test on a LCM, the decomposed HBFEM is applied to accurately calculate the DC-biasing magnetic field. External electric circuits are coupled with the magnetic field in the harmonic domain. The reluctivity matrix is decomposed and the block Gauss-Seidel algorithm solves each harmonic solution of magnetic field and exciting current sequentially. Findings - The calculated exciting currents and flux density are compared with that obtained from measurement and time domain finite element analysis, respectively, which demonstrates consistency. The DC bias leads to the significant saturation of the magnetic core and serious distortion of the exciting current. The flux density varies nonlinearly with DC bias excitation. Research limitations/implications - The harmonic balance method is only applicable in solving the steady state magnetic field. Future improvements in the method are necessary in order to manage the hysteresis effects in magnetic material. Originality/value - The proposed method to solve the DC biased problem significantly reduces the memory requirement compared to the conventional HBFEM. The decomposed harmonic balance equations are solved efficiently by the block Gauss-Seidel algorithm combined with the relaxation iterative scheme. An investigation on DC bias phenomena is carried out through the harmonic solution of the magnetic field. The decomposed HBFEM can also be applied to solve 3-D DC-biasing magnetic field and eddy current nonlinear problems in a practical power transformer.
机译:目的-本文旨在介绍可分解的谐波平衡有限元方法(HBFEM),以减少大规模计算直流偏置磁场时的存储需求。进行了磁通密度和磁通分布的谐波分析,以研究叠层铁心模型(LCM)中的直流偏置问题。设计/方法/方法-基于LCM的直流偏置测试,分解后的HBFEM用于精确计算直流偏置磁场。外部电路与谐波域中的磁场耦合。分解磁阻矩阵,块高斯-赛德尔算法依次求解磁场和励磁电流的每个谐波解。结果-将计算出的励磁电流和磁通密度分别与从测量和时域有限元分析获得的励磁电流和磁通密度进行比较,这表明了一致性。直流偏置会导致磁芯明显饱和,并且励磁电流会严重变形。通量密度随直流偏置激励而非线性变化。研究限制/意义-谐波平衡方法仅适用于求解稳态磁场。为了管理磁性材料中的磁滞效应,有必要对该方法进行进一步的改进。原创性/价值-与传统的HBFEM相比,所提出的解决DC偏置问题的方法显着降低了内存需求。通过块高斯-赛德尔算法结合松弛迭代方案,可以有效地分解分解后的谐波平衡方程。通过磁场的谐波解对直流偏置现象进行了研究。分解后的HBFEM还可用于解决实际电力变压器中的3-D DC偏置磁场和涡流非线性问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号