首页> 外文OA文献 >Modelling Sediment Trapping by Non-Submerged Grass Buffer Strips Using Nonparametric Supervised Learning Technique
【2h】

Modelling Sediment Trapping by Non-Submerged Grass Buffer Strips Using Nonparametric Supervised Learning Technique

机译:使用非参数监督学习技术通过非淹没草缓冲带模拟泥沙捕集

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Grass strips are known as one of the most effective management practices in controlling sediment loss to rivers and other surface water bodies. Some physically-based models have been previously developed to predict the amount of sediment retention in grass strips. Although physically-based models can explain the effects and interactions of various factors, they tend to be sophisticated as they require a large amount of input data. A nonparametric supervised learning statistical model was developed to predict the efficiency of grass strips in trapping sediments. Grass type and density, inflow sediment particle size distribution, slope steepness, length of strip, and the antecedent soil moisture were the five major factors on which the statistical model was built. The model was assessed by comparing with an independent dataset. Estimated bias, coefficient of model efficiency, mean absolute percentage error, Pearson product-moment correlation coefficient of the model were 1.01, 0.54, 18.1and 76% respectively. Testing the model predictions, permuting the input data, showed that inflow sediment particle size distribution, length of the buffer strip, and the antecedent soil moisture are the most important factors upon the performance of grass strips in trapping sediments. From the model outputs for a range of likely scenarios it was concluded that very long strips are needed in extreme conditions such as steep slopes, wet soil and sparse grass strips in order to trap sediments effectively.
机译:草条是控制河流和其他地表水体沉积物流失的最有效管理方法之一。先前已经开发了一些基于物理的模型来预测草条中的沉积物保留量。尽管基于物理的模型可以解释各种因素的影响和相互作用,但由于它们需要大量的输入数据,因此它们往往很复杂。建立了一个非参数监督学习统计模型,以预测草条捕集沉积物的效率。建立统计模型的五个主要因素是草的类型和密度,流入的沉积物粒度分布,坡度,条带长度和前期土壤水分。通过与独立数据集进行比较来评估模型。模型的估计偏差,模型效率系数,平均绝对百分比误差,Pearson乘积矩相关系数分别为1.01、0.54、18.1和76%。测试模型预测并置换输入数据,结果表明流入的沉积物粒度分布,缓冲带长度和前期土壤水分是影响草条捕集沉积物性能的最重要因素。从一系列可能情景的模型输出中得出的结论是,在极端条件下(例如陡坡,潮湿的土壤和稀疏的草条)需要很长的条带才能有效地捕获沉积物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号