首页> 外文OA文献 >System and circuit design for a capacitive MEMS gyroscope
【2h】

System and circuit design for a capacitive MEMS gyroscope

机译:电容式MEMS陀螺仪的系统和电路设计

摘要

In this thesis, issues related to the design and implementation of a micro-electro-mechanicalangular velocity sensor are studied. The work focuses on a system basedon a vibratory microgyroscope which operates in the low-pass mode with a moderateresonance gain and with an open-loop configuration of the secondary (sense) resonator.Both the primary (drive) and the secondary resonators are assumed to have a high qualityfactor. Furthermore, the gyroscope employs electrostatic excitation and capacitivedetection.The thesis is divided into three parts. The first part provides the background informationnecessary for the other two parts. The basic properties of a vibratory microgyroscope,together with the most fundamental non-idealities, are described, a shortintroduction to various manufacturing technologies is given, and a brief review of publishedmicrogyroscopes and of commercial microgyroscopes is provided.The second part concentrates on selected aspects of the system-level design of amicro-electro-mechanical angular velocity sensor. In this part, a detailed analysis isprovided of issues related to different non-idealities in the synchronous demodulation,the dynamics of the primary resonator excitation, the compensation of the mechanicalquadrature signal, and the zero-rate output. The use of ΣΔ modulation to improveaccuracy in both primary resonator excitation and the compensation of the mechanicalquadrature signal is studied.The third part concentrates on the design and implementation of the integratedelectronics required by the angular velocity sensor. The focus is primarily on the designof the sensor readout circuitry, comprising: a continuous-time front-end performingthe capacitance-to-voltage (C/V) conversion, filtering, and signal level normalization;a bandpass ΣΔ analog-to-digital converter, and the required digital signal processing(DSP). The other fundamental circuit blocks, which are a phase-locked loop requiredfor clock generation, a high-voltage digital-to-analog converter for the compensationof the mechanical quadrature signal, the necessary charge pumps for the generationof high voltages, an analog phase shifter, and the digital-to-analog converter used togenerate the primary resonator excitation signals, together with other DSP blocks, areintroduced on a more general level. Additionally, alternative ways to perform the C/Vconversion, such as continuous-time front ends either with or without the upconversionof the capacitive signal, various switched-capacitor front ends, and electromechanicalΣΔ modulation, are studied.In the experimental work done for the thesis, a prototype of a micro-electro-mechanicalangular velocity sensor is implemented and characterized. The analog partsof the system are implemented with a 0.7-µm high-voltage CMOS (ComplimentaryMetal-Oxide-Semiconductor) technology. The DSP part is realized with a field-programmablegate array (FPGA) chip. The ±100°/s gyroscope achieves 0.042°/s/√H̅z̅spot noise and a signal-to-noise ratio of 51.6 dB over the 40 Hz bandwidth, with a100°/s input signal.The implemented system demonstrates the use of ΣΔ modulation in both the primaryresonator excitation and the quadrature compensation. Additionally, it demonstratesphase error compensation performed using DSP. With phase error compensation,the effect of several phase delays in the analog circuitry can be eliminated, andthe additional noise caused by clock jitter can be considerably reduced.
机译:本文研究了与微机电角速度传感器的设计和实现有关的问题。这项工作着重于基于振动微陀螺仪的系统,该系统在低通模式下运行,具有适度的谐振增益,并具有次级(有感)谐振器的开环配置。具有很高的品质因数。此外,陀螺仪还采用了静电激励和电容检测技术。本文共分为三个部分。第一部分提供了其他两个部分所需的背景信息。描述了振动微陀螺仪的基本特性以及最基本的非理想性,简要介绍了各种制造技术,并对已发表的微陀螺仪和商用微陀螺仪进行了简要回顾。第二部分着重介绍了振动陀螺仪的某些方面。微机电角速度传感器的系统级设计。在这一部分中,将对与同步解调中的不同非理想性,主谐振器激励的动力学,机械正交信号的补偿以及零速率输出有关的问题进行详细分析。研究了利用ΣΔ调制来提高一次谐振器激励和机械正交信号补偿的准确性。第三部分着重于角速度传感器所需的集成电子的设计和实现。重点主要放在传感器读出电路的设计上,包括:一个连续时间的前端,用于执行电容-电压(C / V)转换,滤波和信号电平归一化;带通ΣΔ模数转换器,以及所需的数字信号处理(DSP)。其他基本电路模块是时钟产生所需的锁相环,用于补偿机械正交信号的高压数模转换器,用于产生高压的必要电荷泵,模拟移相器,在更一般的层面上介绍了用于生成主谐振器激励信号的数模转换器以及其他DSP模块。此外,还研究了执行C / V转换的其他方法,例如具有或不具有电容信号上转换的连续时间前端,各种开关电容器前端以及机电ΣΔ调制。 ,实现并表征了微机电角速度传感器的原型。该系统的模拟部分采用0.7 µm高压CMOS(互补金属氧化物半导体)技术实现。 DSP部分由现场可编程门阵列(FPGA)芯片实现。 ±100°/ s陀螺仪可实现0.042°/ s /√H̅z̅点噪声,在40Hz带宽上的信噪比为51.6dB,输入信号为100°/ s,该系统演示了ΣΔ调制的使用在初级谐振器的激励和正交补偿方面。此外,它演示了使用DSP执行的相位误差补偿。利用相位误差补偿,可以消除模拟电路中几个相位延迟的影响,并且可以大大减少时钟抖动引起的额外噪声。

著录项

  • 作者

    Saukoski Mikko;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号