首页> 外文OA文献 >Radio spectroscopy and space science with VLBI radio telescopes for Solar System research
【2h】

Radio spectroscopy and space science with VLBI radio telescopes for Solar System research

机译:VLBI射电望远镜在射电光谱学和空间科学领域的研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Only a tiny fraction of the universe has been studied even though the possibilities are unlimited given the current technologies, the resources and the time. To optimize the use of resources, the Metsähovi antenna and the existing VLBI processing hardware were exploited to study a broad variety of space phenomena.The research began with radio spectroscopy of the celestial bodies of our Solar System. Every object emits certain spectral signatures at several radio frequencies depending on its chemical molecules. Earth-based observations of the emitted radio spectral signal help to determine the composition of the structure and atmosphere of the planets. A unique method for processing the data captured by VLBI radio telescopes for radio spectroscopy purposes was developed during this work.Although the initial research focused on planetary bodies, it later shifted to the spacecraft motion. This new aim included studying ground support to planetary and deep-space mission spacecraft with VLBI radio telescopes, which opened up possibilities for collaboration between space agencies and radio astronomers. In addition, with VLBI phase-referencing, a high accuracy estimation of the spacecraft state vectors could be obtained. These new tools provide an opportunity for studying a broad variety of physical processes, including the dynamics of planetary atmospheres, geodynamical diagnostics of the interior of planets, fundamental physics effects of spacecraft motion and solar wind characterization. For instance, we organised a VLBI tracking session of Venus Express that involved 10 antennae and it estimated the spacecraft position with a precision of few hundred metres.The most interesting physical process for further investigation was the characterisation of the solar wind along the propagation path. The phase fluctuations on the signal allowed us to study essential parameters of the interplanetary scintillations, such as the phase scintillation index, bandwidth of scintillations or spectral broadening and their dependence on the solar elongation, distance to the target, celestial position of the spacecraft and radio telescopes. A scintillation and electron density model as a function of solar elongation was developed based on the data collected during two years. This model is powerful for improving the accurate determination of the spacecraft state vectors.
机译:尽管目前的技术,资源和时间是无限的,但对宇宙的一小部分进行了研究。为了优化资源利用,梅萨霍维(Metsähovi)天线和现有的VLBI处理硬件被用来研究各种各样的空间现象。研究始于我们太阳系天体的无线电光谱学。每个物体都根据其化学分子在几个射频上发出某些光谱特征。从地球上观察到的发射光谱信号有助于确定行星结构和大气的成分。在这项工作期间,开发了一种独特的方法来处理VLBI射电望远镜捕获的数据用于无线电光谱学目的。尽管最初的研究集中在行星体上,但后来转移到了航天器的运动上。这个新目标包括使用VLBI射电望远镜研究对行星和深空任务航天器的地面支持,这为空间机构与射电天文学家之间的合作开辟了可能性。另外,利用VLBI相位参考,可以获得航天器状态向量的高精度估计。这些新工具为研究广泛的物理过程提供了机会,包括行星大气的动力学,行星内部的动力学诊断,航天器运动的基本物理效应以及太阳风的表征。例如,我们组织了Venus Express的VLBI跟踪会议,涉及10条天线,它以几百米的精度估算了航天器的位置。进一步研究的最有趣的物理过程是沿传播路径表征太阳风。信号上的相位波动使我们能够研究行星际闪烁的基本参数,例如相位闪烁指数,闪烁的带宽或光谱展宽以及它们对太阳伸长率的依赖性,与目标的距离,航天器的天体位置和无线电望远镜。根据两年来收集的数据,开发了一个闪烁和电子密度模型,该模型是太阳伸长率的函数。该模型对于改进对航天器状态向量的准确确定是强大的。

著录项

  • 作者

    Molera Calvés Guifré;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号