Mobile networks are experiencing a dramatic increase in the data traffic. Besides, a continuously growing number of users expect mobile broadband access with the utmost in quality and ubiquitous connectivity. In this regard, multi-hop decode-and-forward relaying is a promising enhancement to existing radio access networks to fulfill the challenging requirements in a cost-efficient way and, thus, is an integral part of the Fourth Generation (4G) standards. Nevertheless, in order to fully exploit the potential benefits of relay deployments, proper radio resource management (RRM) is necessary.The research in this thesis has contributed to cellular relay deployments for future mobile networks. Concretely, we have developed key RRM concepts with a particular focus on the uplink (UL) system performance to complement the existing literature. We have demonstrated the performance of these concepts by taking Third Generation Partnership Project (3GPP) Long-Term Evolution (LTE) Release 10 and beyond (LTE-Advanced) Type 1 inband relaying as a practical framework, and by considering urban and suburban scenarios. First, by performing relay site planning (RSP) we aim at improving the quality of the wireless backhaul which is crucial for the end-to-end user performance. Then, we analyze UL power control (PC) and verify its importance and applicability in relay deployments. In this context, we propose manual and automated optimizations to tune PC parameters on all links to further enhance the system performance. Moreover, we study the energy efficiency by taking into account throughput (TP) per power consumption. Further, we investigate various resource sharing strategies among and within the links. Via proposed approaches, performance enhancement is targeted along with higher system fairness and more flexible resource allocation. In addition, we address a key issue regarding the small coverage area of an RN cell in the overlaying macrocell, which results in load imbalances, inefficient resource utilization, and increased UL inter-cell interference. Specifically, we apply practical cell range extension (CRE) techniques to cope with these drawbacks.Performance evaluations reveal that relay deployments clearly outperform macrocell-only deployments in terms of TP as well as TP per power consumption provided that proper RRM is performed. Our results also verify that the use of RSP yields substantial improvements. Furthermore, our results show that the proposed RRM concepts and the associated joint optimization strategies can fulfill the aforementioned goals while achieving significant system performance enhancements.
展开▼