首页> 外文OA文献 >A similarity metric for the inputs of OO programs and its application in adaptive random testing
【2h】

A similarity metric for the inputs of OO programs and its application in adaptive random testing

机译:面向对象程序输入的相似性度量及其在自适应随机测试中的应用

摘要

Random testing (RT) has been identified as one of the most popular testing techniques, due to its simplicity and ease of automation. Adaptive random testing (ART) has been proposed as an enhancement to RT, improving its fault-detection effectiveness by evenly spreading random test inputs across the input domain. To achieve the even spreading, ART makes use of distance measurements between consecutive inputs. However, due to the nature of object-oriented software (OOS), its distance measurement can be particularly challenging: Each input may involve multiple classes, and interaction of objects through method invocations. Two previous studies have reported on how to test OOS at a single-class level using ART. In this study, we propose a new similarity metric to enable multiclass level testing using ART. When generating test inputs (for multiple classes, a series of objects, and a sequence of method invocations), we use the similarity metric to calculate the distance between two series of objects, and between two sequences of method invocations. We integrate this metric with ART and apply it to a set of open-source OO programs, with the empirical results showing that our approach outperforms other RT and ART approaches in OOS testing.
机译:随机测试(RT)由于其简单性和自动化程度而被公认为是最受欢迎的测试技术之一。自适应随机测试(ART)已被提议作为RT的增强,通过在输入域中均匀分布随机测试输入来提高其故障检测效率。为了实现均匀扩展,ART利用了连续输入之间的距离测量。但是,由于面向对象软件(OOS)的性质,其距离测量可能特别具有挑战性:每个输入可能涉及多个类,并且对象之间通过方法调用进行交互。先前的两项研究报告了如何使用ART在单一课程级别上测试OOS。在这项研究中,我们提出了一种新的相似性度量标准,以允许使用ART进行多类级别的测试。在生成测试输入(对于多个类,一系列对象和一系列方法调用)时,我们使用相似性度量来计算两个系列对象之间以及两个方法调用序列之间的距离。我们将该指标与ART集成在一起,并将其应用于一组开源的OO程序,经验结果表明,在OOS测试中,我们的方法优于其他RT和ART方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号