首页> 外文OA文献 >Variation analysis of automated wing box assembly
【2h】

Variation analysis of automated wing box assembly

机译:自动机翼盒组件的变化分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Manufacturing process variability is a major issue of concern in high value industries. Manufacturing small batches and in some cases batches of one is a very expensive process with specific requirements for manufacturing operations, tooling and fixturing and their level of automation and informatics provision. The automation targets cost reduction and a counterbalancing of the ever lower numbers of skilled shop floor workers. However, these small series typically are products that contain complex and compliant parts, and often also a high number of parts and components. The automation of this type of low-volume high-value production can be a daunting task.\udEach process has its own key parameters that are required to be within a certain tolerance band in order to ensure product quality, such as e.g. the dimensions and location of assembly mating features. Dimensional quality assurance is typically done with in-process measurement, or the measurement of certain key characteristics (KCs) in the current setup, but a special setup may have to be used in a measurement-only step in the manufacturing process. Each manufacturing stage introduces errors stemming from uncertainties in the fixturing, used processes etc. These errors will propagate in downstream stages and can even worsen errors introduced in the latter stages.\udThe paper presents a new generic methodology for the use of stream of variation (SoV) analysis within a Smart Factory environment such as the Evolvable Assembly Systems (EAS) framework. The research is demonstrated using a simplified case study of one of EAS demonstrators for an aircraft wing box assembly. The wing box assembly and its KCs are described using formal representation. The SoV model is applied to model and simulate the assembly process. The simulation results are then analysed to predict, control and minimise the error propagation coming from uncertainties in process and equipment.
机译:制造过程的可变性是高价值行业关注的主要问题。制造小批量,有时甚至是一个批次,是一个非常昂贵的过程,对制造操作,工装和夹具及其自动化和信息学水平有特殊要求。自动化的目标是降低成本并平衡越来越少的熟练车间工人。但是,这些小系列产品通常是包含复杂且合规的零件的产品,通常还包含大量的零件和组件。这种类型的小批量高价值生产的自动化可能是一项艰巨的任务。\ ud每个过程都有其自己的关键参数,这些参数必须在一定的公差范围内才能确保产品质量,例如装配配合特征的尺寸和位置。尺寸质量保证通常通过过程中的测量或在当前设置中对某些关键特性(KC)的测量来完成,但是在制造过程中的仅测量步骤中可能必须使用特殊的设置。每个制造阶段都会引入由于夹具,使用的工艺等方面的不确定性而产生的误差。这些误差将在下游阶段传播,甚至可能加剧在后期阶段引入的误差。\ ud本文提出了一种使用变化流的新通用方法(智能工厂环境(例如,可扩展装配系统(EAS)框架)中的SoV分析。一项用于飞机机翼盒组件的EAS演示器的简化案例研究证明了该研究。机翼盒组件及其KC使用正式表示法进行描述。 SoV模型用于建模和模拟装配过程。然后对仿真结果进行分析,以预测,控制和最小化来自过程和设备不确定性的误差传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号