首页> 外文OA文献 >A method to estimate plant density and plant spacing heterogeneity: application to wheat crops
【2h】

A method to estimate plant density and plant spacing heterogeneity: application to wheat crops

机译:一种估算植物密度和株距异质性的方法:在小麦作物中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Background: Plant density and its non-uniformity drive the competition among plants as well as with weeds. They need thus to be estimated with small uncertainties accuracy. An optimal sampling method is proposed to estimate the plant density in wheat crops from plant counting and reach a given precision. Results: Three experiments were conducted in 2014 resulting in 14 plots across varied sowing density, cultivars and environmental conditions. The coordinates of the plants along the row were measured over RGB high resolution images taken from the ground level. Results show that the spacing between consecutive plants along the row direction are independent and follow a gamma distribution under the varied conditions experienced. A gamma count model was then derived to define the optimal sample size required to estimate plant density for a given precision. Results suggest that measuring the length of segments containing 90 plants will achieve a precision better than 10%, independently from the plant density. This approach appears more efficient than the usual method based on fixed length segments where the number of plants are counted: the optimal length for a given precision on the density estimation will depend on the actual plant density. The gamma count model parameters may also be used to quantify the heterogeneity of plant spacing along the row by exploiting the variability between replicated samples. Results show that to achieve a 10% precision on the estimates of the 2 parameters of the gamma model, 200 elementary samples corresponding to the spacing between 2 consecutive plants should be measured. Conclusions: This method provides an optimal sampling strategy to estimate the plant density and quantify the plant spacing heterogeneity along the row.
机译:背景:植物密度及其不均匀性驱动着植物之间以及杂草之间的竞争。因此,需要以较小的不确定性精度来估计它们。提出了一种最佳采样方法,通过植物计数来估算小麦作物的植物密度,并达到给定的精度。结果:2014年进行了三个实验,得出14个样地,涉及不同的播种密度,栽培品种和环境条件。沿行的植物坐标是在从地面获取的RGB高分辨率图像上测量的。结果表明,在行进方向上,连续植物之间的间距是独立的,并且在变化的条件下遵循伽马分布。然后导出一个伽玛计数模型,以定义在给定精度下估算植物密度所需的最佳样本量。结果表明,与植物密度无关,测量包含90个植物的片段的长度将获得优于10%的精度。这种方法似乎比基于固定长度段的常规方法更有效,在固定长度段中,对植物的数量进行计数:对于密度估计值的给定精度,最佳长度取决于实际植物密度。伽玛计数模型参数还可以用于通过利用重复样本之间的变异性来量化沿行的植物间距的异质性。结果表明,要使γ模型的2个参数的估计值达到10%的精度,应测量与2个连续植物之间的间距相对应的200个基本样本。结论:该方法提供了一种最佳的采样策略,以估算植物密度并量化行中植物间距的异质性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号