首页> 外文OA文献 >EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models
【2h】

EM algorithm coupled with particle filter for maximum likelihood parameter estimation of stochastic differential mixed-effects models

机译:EM算法与粒子滤波器结合用于随机差分混合效应模型的最大似然参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological processes measured repeatedly among a series of individuals are standardly analyzed by mixed models. These biological processes can be adequately modeled by parametric Stochastic Differential Equations (SDEs). We focus on the parametric maximum likelihood estimation of this mixed-effects model defined by SDE. As the likelihood is not explicit, we propose a stochastic version of the Expectation-Maximization algorithm combined with the Particle Markov Chain Monte Carlo method. When the transition density of the SDE is explicit, we prove the convergence of the SAEM-PMCMC algorithm towards the maximum likelihood estimator. Two simulated examples are considered: an Ornstein-Uhlenbeck process with two random parameters and a time-inhomogeneous SDE (Gompertz SDE) with a stochastic volatility error model and three random parameters. When the transition density is unknown, we prove the convergence of a different version of the algorithm based on the Euler approximation of the SDE towards the maximum likelihood estimator.
机译:通过混合模型标准地分析了一系列个体中重复测量的生物过程。这些生物过程可以通过参数随机微分方程(SDE)进行适当建模。我们专注于SDE定义的这种混合效应模型的参数最大似然估计。由于可能性不是很明确,所以我们提出了与粒子马尔可夫链蒙特卡罗方法相结合的期望最大化算法的随机版本。当SDE的转移密度明确时,我们证明了SAEM-PMCMC算法朝最大似然估计的收敛性。考虑了两个模拟示例:带有两个随机参数的Ornstein-Uhlenbeck过程以及带有随机波动率误差模型和三个随机参数的时间非均匀SDE(Gompertz SDE)。当转换密度未知时,我们证明了基于SDE的Euler逼近向最大似然估计器的不同版本算法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号