首页> 外文OA文献 >When the vertex coloring of a graph is an edge coloring of its line graph - a rare coincidence
【2h】

When the vertex coloring of a graph is an edge coloring of its line graph - a rare coincidence

机译:当图的顶点着色是其折线图的边缘着色时-一种罕见的巧合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The 3-consecutive vertex coloring number psi(3c)(G) of a graph G is the maximum number of colors permitted in a coloring of the vertices of G such that the middle vertex of any path P-3 subset of G has the same color as one of the ends of that P-3. This coloring constraint exactly means that no P-3 subgraph of G is properly colored in the classical sense. The 3-consecutive edge coloring number psi(3c)'(G) is the maximum number of colors permitted in a coloring of the edges of G such that the middle edge of any sequence of three edges (in a path P-4 or cycle C-3) has the same color as one of the other two edges. For graphs G of minimum degree at least 2, denoting by L(G) the line graph of G, we prove that there is a bijection between the 3-consecutive vertex colorings of G and the 3-consecutive edge colorings of L(G), which keeps the number of colors unchanged, too. This implies that psi(3c)(G) = psi(3c)'(L(G)); i.e., the situation is just the opposite of what one would expect for first sight.
机译:图G的3个连续的顶点着色数psi(3c)(G)是G的顶点着色中允许的最大颜色数,以使G的任何路径P-3子集的中间顶点具有相同的色度颜色作为该P-3的目的之一。这种着色约束恰好意味着,在经典意义上,没有正确地着色G的P-3子图。 3连续边缘着色数psi(3c)'(G)是在对G边缘进行着色时允许的最大颜色数,以使三个边缘的任何序列的中间边缘(在路径P-4或循环中) C-3)与其他两个边缘之一具有相同的颜色。对于最小度为2的图G,用L(G)表示G的线图,我们证明G的3个连续顶点着色与L(G)的3个连续边缘着色之间存在双射,这也使颜色数量保持不变。这意味着psi(3c)(G)= psi(3c)'(L(G));即情况与人们一见钟情相反。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号