首页> 外文OA文献 >Coverings by Few Monochromatic Pieces: A Transition Between Two Ramsey Problems
【2h】

Coverings by Few Monochromatic Pieces: A Transition Between Two Ramsey Problems

机译:很少的单色作品覆盖:两个拉姆齐问题之间的过渡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The typical problem in (generalized) Ramsey theory is to find the order of the largest monochromatic member of a family {Mathematical expression} (for example matchings, paths, cycles, connected subgraphs) that must be present in any edge coloring of a complete graph Kn with t colors. Another area is to find the minimum number of monochromatic members of {Mathematical expression} that partition or cover the vertex set of every edge colored complete graph. Here we propose a problem that connects these areas: for a fixed positive integers s ≤ t, at least how many vertices can be covered by the vertices of no more than s monochromatic members of {Mathematical expression} in every edge coloring of Kn with t colors. Several problems and conjectures are presented, among them a possible extension of a well-known result of Cockayne and Lorimer on monochromatic matchings for which we prove an initial step: every t-coloring of Kn contains a (t - 1)-colored matching of size k provided that {Mathematical expression} © 2013 Springer Japan.
机译:(广义)Ramsey理论中的典型问题是找到完整图的任何边缘着色中必须存在的一个家族{数学表达式}(例如匹配,路径,循环,连接的子图)的最大单色成员的顺序。与t颜色的Kn。另一个领域是找到{数学表达式}的单色成员的最小数量,该单色成员划分或覆盖每个有边彩色完整图的顶点集。在这里,我们提出了一个将这些区域联系起来的问题:对于固定的正整数s≤t,在Kt的每个边缘着色中,至少不超过s个{数学表达式}的单色元素的顶点可以覆盖多少个顶点颜色。提出了几个问题和猜想,其中包括众所周知的Cockayne和Lorimer关于单色匹配的结果的可能扩展,为此我们证明了其第一步:每个Kn的t色都包含(t-1)色的大小k规定{数学表达式}©2013 Springer Japan。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号