首页> 外文OA文献 >Explicit Derivation of Yang-Mills Self-Dual Solutions on non-Commutative Harmonic Space
【2h】

Explicit Derivation of Yang-Mills Self-Dual Solutions on non-Commutative Harmonic Space

机译:非交换调和空间上Yang-Mills自对偶解的显式推导

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop the noncommutative harmonic space (NHS) analysis to study the problem of solving the non-linear constraint eqs of noncommutative Yang-Mills self-duality in four-dimensions. We show that this space, denoted also as NHS($\eta,\theta$), has two SU(2) isovector deformations $\eta^{(ij)}$ and $\theta^{(ij)}$ parametrising respectively two noncommutative harmonic subspaces NHS($\eta,0$) and NHS($0,\theta$) used to study the self-dual and anti self-dual noncommutative Yang-Mills solutions. We formulate the Yang-Mills self-dual constraint eqs on NHS($\eta,0$) by extending the idea of harmonic analyticity to linearize them. Then we give a perturbative self-dual solution recovering the ordinary one. Finally we present the explicit computation of an exact self-dual solution.
机译:我们开发了非交换谐波空间(NHS)分析,以研究解决四维非交换Yang-Mills自对偶的非线性约束方程的问题。我们表明,该空间也表示为NHS($ \ eta,\ theta $),具有两个SU(2)等矢量变形$ \ eta ^ {(ij)} $和$ \ theta ^ {(ij)} $参数化分别使用两个非对易调和子空间NHS($ \ eta,0 $)和NHS($ 0,\ theta $)来研究自对偶和反自对偶Yang-Mills解。我们通过扩展谐波分析的概念来线性化它们,从而在NHS($ \ eta,0 $)上制定Yang-Mills自对偶约束等式。然后,我们给出了一种摄动的自对偶解,它恢复了普通的对偶解。最后,我们给出精确的自对偶解的显式计算。

著录项

代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号