首页> 外文OA文献 >LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction
【2h】

LIBRUS: combined machine learning and homology information for sequence-based ligand-binding residue prediction

机译:LIBRUS:结合机器学习和同源性信息进行基于序列的配体结合残基预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motivation: Identifying residues that interact with ligands is useful as a first step to understanding protein function and as an aid to designing small molecules that target the protein for interaction. Several studies have shown that sequence features are very informative for this type of prediction, while structure features have also been useful when structure is available. We develop a sequence-based method, called LIBRUS, that combines homology-based transfer and direct prediction using machine learning and compare it to previous sequence-based work and current structure-based methods.
机译:动机:鉴定与配体相互作用的残基可用于了解蛋白质功能的第一步,并有助于设计靶向蛋白质相互作用的小分子。多项研究表明,序列特征对于这种类型的预测非常有用,而结构特征在结构可用时也很有用。我们开发了一种基于序列的方法,称为LIBRUS,该方法结合了基于同源性的转移和使用机器学习的直接预测,并将其与以前的基于序列的工作和当前基于结构的方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号