首页> 外文OA文献 >Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI
【2h】

Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI

机译:运动图像BCI中常见空间模式的多主题学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Motor-imagery-based brain-computer interfaces (BCIs) commonly usethe common spatial pattern filter (CSP) as preprocessing step before featureextraction and classification. The CSP method is a supervised algorithmand therefore needs subject-specific training data for calibration,which is very time consuming to collect. In order to reduce the amountof calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preprocessing phase. Here, thegoal of multisubject learning is to learn a spatial filter for a new subjectbased on its own data and that of other subjects. This paper outlinesthe details of the multitask CSP algorithm and shows results on two datasets. In certain subjects a clear improvement can be seen, especially whenthe number of training trials is relatively low.
机译:基于运动图像的脑机接口(BCI)通常在特征提取和分类之前使用公共空间模式滤波器(CSP)作为预处理步骤。 CSP方法是一种监督算法,因此需要针对特定​​学科的培训数据进行校准,这非常耗时。为了减少新主题所需的校准数据量,可以将多任务(从现在开始称为多主题)机器学习技术应用于预处理阶段。在这里,多主题学习的目标是根据新主题本身和其他主题的数据为新主题学习空间过滤器。本文概述了多任务CSP算法的细节,并显示了两个数据集上的结果。在某些科目中可以看到明显的改善,尤其是在培训试验的数量相对较少的情况下。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号