首页> 外文OA文献 >Increased Air Temperature during Simulated Autumn Conditions Impairs Photosynthetic Electron Transport between Photosystem II and Photosystem I1[OA]
【2h】

Increased Air Temperature during Simulated Autumn Conditions Impairs Photosynthetic Electron Transport between Photosystem II and Photosystem I1[OA]

机译:在模拟秋季条件下升高的气温会损害光系统II和光系统I1之间的光合电子传输[OA]

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Changes in temperature and daylength trigger physiological and seasonal developmental processes that enable evergreen trees of the boreal forest to withstand severe winter conditions. Climate change is expected to increase the autumn air temperature in the northern latitudes, while the natural decreasing photoperiod remains unaffected. As shown previously, an increase in autumn air temperature inhibits CO2 assimilation, with a concomitant increased capacity for zeaxanthin-independent dissipation of energy exceeding the photochemical capacity in Pinus banksiana. In this study, we tested our previous model of antenna quenching and tested a limitation in intersystem electron transport in plants exposed to elevated autumn air temperatures. Using a factorial design, we dissected the effects of temperature and photoperiod on the function as well as the stoichiometry of the major components of the photosynthetic electron transport chain in P. banksiana. Natural summer conditions (16-h photoperiod/22°C) and late autumn conditions (8-h photoperiod/7°C) were compared with a treatment of autumn photoperiod with increased air temperature (SD/HT: 8-h photoperiod/22°C) and a treatment with summer photoperiod and autumn temperature (16-h photoperiod/7°C). Exposure to SD/HT resulted in an inhibition of the effective quantum yield associated with a decreased photosystem II/photosystem I stoichiometry coupled with decreased levels of Rubisco. Our data indicate that a greater capacity to keep the primary electron donor of photosystem I (P700) oxidized in plants exposed to SD/HT compared with the summer control may be attributed to a reduced rate of electron transport from the cytochrome b6f complex to photosystem I. Photoprotection under increased autumn air temperature conditions appears to be consistent with zeaxanthin-independent antenna quenching through light-harvesting complex II aggregation and a decreased efficiency in energy transfer from the antenna to the photosystem II core. We suggest that models that predict the effect of climate change on the productivity of boreal forests must take into account the interactive effects of photoperiod and elevated temperatures.
机译:温度和日长的变化会触发生理和季节发育过程,使北方森林的常绿乔木能够承受严峻的冬季条件。预计气候变化会增加北纬秋季的气温,而自然减少的光周期仍不受影响。如前所述,秋季气温的升高会抑制CO2的吸收,与此同时,与玉米黄质无关的能量消散能力也随之增加,超过了松树的光化学能力。在这项研究中,我们测试了我们以前的天线猝灭模型,并测试了暴露于秋季高温的植物中系统间电子传输的局限性。使用析因设计,我们解剖了温度和光周期对P.bankiana光合作用电子传输链的功能以及主要成分的化学计量的影响。将夏季自然条件(16小时光照周期/ 22°C)和深秋条件(8小时光照周期/ 7°C)与增加空气温度的秋季光照周期进行比较(SD / HT:8小时光照周期/ 22) °C)和夏季光照和秋季温度(16小时光照/ 7°C)进行处理。暴露于SD / HT导致光量子系统II /光系统化学计量比降低以及Rubisco含量降低相关的有效量子产率受到抑制。我们的数据表明,与夏季对照组相比,在暴露于SD / HT的植物中,保持光系统I(P700)的主要电子供体被氧化的能力更高,这可能归因于电子从细胞色素b6f复合体到光系统I的传输速率降低。在秋季气温升高的条件下进行的光保护似乎与通过采光复合物II的聚集而与玉米黄素无关的天线猝灭以及降低了从天线到光系统II核心的能量转移效率相一致。我们建议预测气候变化对北方森林生产力影响的模型必须考虑到光周期和高温的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号