首页> 外文OA文献 >Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation*
【2h】

Signal Transducer and Activator of Transcription 3 (STAT3) Mediates Amino Acid Inhibition of Insulin Signaling through Serine 727 Phosphorylation*

机译:信号转导和转录激活因子3(STAT3)通过丝氨酸727磷酸化介导胰岛素信号的氨基酸抑制*

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Nutrient overload is associated with the development of obesity, insulin resistance, and type II diabetes. High plasma concentrations of amino acids have been found to correlate with insulin resistance. At the cellular level, excess amino acids impair insulin signaling, the mechanisms of which are not fully understood. Here, we report that STAT3 plays a key role in amino acid dampening of insulin signaling in hepatic cells. Excess amino acids inhibited insulin-stimulated Akt phosphorylation and glycogen synthesis in mouse primary hepatocytes as well as in human hepatocarcinoma HepG2 cells. STAT3 knockdown protected insulin sensitivity from inhibition by amino acids. Amino acids stimulated the phosphorylation of STAT3 at Ser727, but not Tyr705. Replacement of the endogenous STAT3 with wild-type, but not S727A, recombinant STAT3 restored the ability of amino acids to inhibit insulin signaling, suggesting that Ser727 phosphorylation was critical for STAT3-mediated amino acid effect. Furthermore, overexpression of STAT3-S727D was sufficient to inhibit insulin signaling in the absence of excess amino acids. Our results also indicated that mammalian target of rapamycin was likely responsible for the phosphorylation of STAT3 at Ser727 in response to excess amino acids. Finally, we found that STAT3 activity and the expression of its target gene socs3, known to be involved in insulin resistance, were both stimulated by excess amino acids and inhibited by rapamycin. In conclusion, our study reveals STAT3 as a novel mediator of nutrient signals and identifies a Ser727 phosphorylation-dependent and Tyr705 phosphorylation-independent STAT3 activation mechanism in the modulation of insulin signaling.
机译:营养过剩与肥胖,胰岛素抵抗和II型糖尿病的发展有关。已经发现高血浆氨基酸浓度与胰岛素抵抗相关。在细胞水平上,过量的氨基酸会损害胰岛素信号传导,其机理尚未完全了解。在这里,我们报道STAT3在肝细胞中胰岛素信号的氨基酸衰减中起关键作用。过量的氨基酸抑制了小鼠原代肝细胞以及人肝癌HepG2细胞中胰岛素刺激的Akt磷酸化和糖原合成。 STAT3敲低保护胰岛素敏感性不受氨基酸抑制。氨基酸刺激Ser727处的STAT3磷酸化,而不刺激Tyr705。用野生型而非S727A替代内源STAT3,重组STAT3恢复了氨基酸抑制胰岛素信号传导的能力,这表明Ser727磷酸化对于STAT3介导的氨基酸效应至关重要。此外,在不存在过量氨基酸的情况下,STAT3-S727D的过表达足以抑制胰岛素信号传导。我们的结果还表明,雷帕霉素的哺乳动物靶标可能是响应过多氨基酸而导致Ser727处STAT3磷酸化的原因。最后,我们发现STAT3活性及其靶基因socs3的表达(已知与胰岛素抵抗有关)均受到过量氨基酸的刺激,并受到雷帕霉素的抑制。总之,我们的研究揭示了STAT3作为营养信号的新型介体,并确定了胰岛素信号调节中Ser727磷酸化依赖性和Tyr705磷酸化依赖性的STAT3激活机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号