首页> 外文OA文献 >Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition by Rhodobacter capsulatus SB1003▿
【2h】

Phototrophic Fe(II) Oxidation Promotes Organic Carbon Acquisition by Rhodobacter capsulatus SB1003▿

机译:光养性Fe(II)氧化可促进荚膜红细菌SB1003▿吸收有机碳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.
机译:产氧的光养性Fe(II)氧化通常被认为是自养营养的代谢,有助于基于Fe的生态系统的初级生产。在这项研究中,我们采用荚膜红细菌SB1003作为模型生物来测试光养性Fe(II)氧化可以与有机碳获取耦合的假设。荚膜红球菌SB1003在缺氧条件下以光依赖性方式氧化Fe(II),但在可溶性Fe(II)上无法自养生长。然而,当向菌株提供柠檬酸Fe(II)时,观察到生长依赖于微生物催化的Fe(II)氧化,导致柠檬酸Fe(III)的形成。随后柠檬酸三价铁的光化学分解产生了乙酰乙酸,该乙酸支持在黑暗中生长,但在黑暗中不生长。乙酰乙酸利用所需的编码atoA和atoD同源物的基因(RRC00247和RRC00248)的缺失严重损害了荚膜红球菌SB1003在柠檬酸Fe(II)上生长的能力。在柠檬酸盐存在下,荚膜红球菌SB1003的生长产量不能通过配体的间接作用(例如改变Fe(II)氧化的热力学或防止细胞结壳)而对Fe(II)进行自养营养生长来解释。在一起,这些结果表明荚膜梭菌SB1003在柠檬酸Fe(II)上光异养生长。亚硝酸三乙酸还支持光依赖于Fe(II)的生长,这表明Fe(II)氧化可能是某些氧化Fe(II)的细菌开采否则无法获得的有机碳源的一般机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号