Velocity sedimentation has been used extensively to separate particles according to the magnitude of their sedimentation velocity in suitable media. This technique has been used over a wide range of particle size from protein molecules, viruses, subcellular particles to whole cells. Successful separation demands that collective particle motion should not occur. In practice it is observed that such systems may, under certain circumstances, suffer from a particular type of instability which destroys the normal dependence of sedimentation velocity on particle size and density. The aim of this paper is to identify the critical parameters that determine the development of this instability. Stability criteria are deduced and predictions of the theory compared with published observations. Satisfactory agreement between theory and observation is obtained. It is concluded that the simple stability criterion, namely that stable sedimentation will occur if the total density gradient is in the direction of the sedimenting force, grossly overestimates the particle load that can be separated in practice. Some specific recommendations for optimum particle loading are included. Earlier theoretical and experimental works are briefly reviewed.
展开▼