Subgraph/supergraph queries although central to graph analytics, are costly as they entail the NP-Complete problem of subgraph isomorphism. We present a fresh solution, the novel principle of which is to acquire and utilize knowledge from the results of previously executed queries. Our approach, iGQ, encompasses two component subindexes to identify if a new query is a subgraph/supergraph of previously executed queries and stores related key information. iGQ comes with novel query processing and index space management algorithms, including graph replacement policies. The end result is a system that leads to significant reduction in the number of required subgraph isomorphism tests and speedups in query processing time. iGQ can be incorporated into any sub/supergraph query processing method and help improve performance. In fact, it is the only contribution that can speedup significantly both subgraph and supergraph query processing. We establish the principles of iGQ and formally prove its correctness. We have implemented iGQ and have incorporated it within three popular recent state of the art index-based graph query processing solutions. We evaluated its performance using real-world and synthetic graph datasets with different characteristics, and a number of query workloads, showcasing its benefits.
展开▼