The accurate estimation of scaling exponents is central in the observational study of scale-invariant phenomena. Natural systems unavoidably provide observations over restricted intervals; consequently, a stationary stochastic process (time series) can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as ~1/N as N for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow. We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this ~1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series.\ud\ud
展开▼
机译:标度指数的准确估计在标度不变现象的观察研究中至关重要。自然系统不可避免地会在有限的时间间隔内提供观测;因此,平稳的随机过程(时间序列)可能会导致缩放指数出现异常的时间变化,这表明存在非平稳性。从N个观测值的间隔中计算出的缩放指数估计值的方差对于有限方差过程而言是已知的,对于某些统计估计量,其变化范围约为N的1/1 / N。但是,此行为的收敛将取决于过程的细节,并且可能很慢。我们研究了各种合成和“现实世界”时间序列中时间序列增量的二阶矩随N的缩放比例的变化,并且我们发现,特别是对于重尾过程,对于可实现的N,一个是远没有这个〜1 / N限制行为。我们建议对最小N进行半经验估计,以对模型随机过程的比例指数进行有意义的估计,并将其与某些“真实世界”时间序列进行比较。\ ud \ ud
展开▼