首页> 外文OA文献 >Pseudo-nonstationarity in the scaling exponents of finite-interval time series
【2h】

Pseudo-nonstationarity in the scaling exponents of finite-interval time series

机译:有限间隔时间序列的标度指数中的伪非平稳性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accurate estimation of scaling exponents is central in the observational study of scale-invariant phenomena. Natural systems unavoidably provide observations over restricted intervals; consequently, a stationary stochastic process (time series) can yield anomalous time variation in the scaling exponents, suggestive of nonstationarity. The variance in the estimates of scaling exponents computed from an interval of N observations is known for finite variance processes to vary as ~1/N as N for certain statistical estimators; however, the convergence to this behavior will depend on the details of the process, and may be slow. We study the variation in the scaling of second-order moments of the time-series increments with N for a variety of synthetic and “real world” time series, and we find that in particular for heavy tailed processes, for realizable N, one is far from this ~1/N limiting behavior. We propose a semiempirical estimate for the minimum N needed to make a meaningful estimate of the scaling exponents for model stochastic processes and compare these with some “real world” time series.\ud\ud
机译:标度指数的准确估计在标度不变现象的观察研究中至关重要。自然系统不可避免地会在有限的时间间隔内提供观测;因此,平稳的随机过程(时间序列)可能会导致缩放指数出现异常的时间变化,这表明存在非平稳性。从N个观测值的间隔中计算出的缩放指数估计值的方差对于有限方差过程而言是已知的,对于某些统计估计量,其变化范围约为N的1/1 / N。但是,此行为的收敛将取决于过程的细节,并且可能很慢。我们研究了各种合成和“现实世界”时间序列中时间序列增量的二阶矩随N的缩放比例的变化,并且我们发现,特别是对于重尾过程,对于可实现的N,一个是远没有这个〜1 / N限制行为。我们建议对最小N进行半经验估计,以对模型随机过程的比例指数进行有意义的估计,并将其与某些“真实世界”时间序列进行比较。\ ud \ ud

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号