首页> 外文OA文献 >Hybrid Materials And Processes For Flash Memory Gate Stack
【2h】

Hybrid Materials And Processes For Flash Memory Gate Stack

机译:闪存门堆栈的混合材料和工艺

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Scaling conventional floating gate Flash memory faces extremely difficult challenges today. Novel structures in both the gate stack and channel have been adopted for better scalability while maintaining memory performance. Gate stack designs with discrete-charge storage such as nanocyrstal (NC) memory have demonstrated significant enhancement in retention to programming time (tR / tPE) ratio at low program/erase (P/E) voltages and superior cycling lifetime. A 3D finite-element method (FEM) simulation was performed to assess the bit-error-rate (BER) due to the non-uniformity in NC size, position, and density distribution below the 30nm technology node. To address the parametric variation for discrete-charge storage, hybrid approaches with integration of organic molecules, atomic-layer-deposited oxide, and solution-based processes offer better uniform charging capability by utilizing the bottom-up self-assembly method and the monodispersion nature of the molecules. We investigated barriers with thermally and electrically stable redox-active ferrocine (Fc) and cobalt-porphyrin (CoP) as well as alkyl-chain molecules in a well-studied metaloxide-semiconductor (MOS) structure to better understand the charge storage, dielectric and interface properties of the molecular layers. For charge storage, the density of CoP can be readily controlled to achieve three distinguishable memory states in a single cell at room-temperature. In addition, we employed CoP as a resonant tunneling barrier (RTB) that further extends the retention-to-program time ratio and cycling lifetime. Hybrid solution-based layer-by- layer (LBL) deposition methods are demonstrated with various functional ends of the benzyl and alkyl molecules to create large area, electrically robust molecular junctions and insulation. Our approach provides a practical and promising way for the design and fabrication of silicon-based or all-organic nonvolatile memories.
机译:扩展传统的浮栅闪存如今面临着极其困难的挑战。门堆栈和通道中都采用了新颖的结构,以在保持存储器性能的同时实现更好的可伸缩性。具有离散电荷存储功能(例如纳米晶(NC)存储器)的栅极叠层设计在低编程/擦除(P / E)电压下显示出对编程时间(tR / tPE)的保持率有了显着提高,并且循环寿命更长。进行了3D有限元方法(FEM)仿真,以评估由于30纳米技术节点以下NC尺寸,位置和密度分布不​​均匀而导致的误码率(BER)。为了解决离散电荷存储的参数变化,通过使用自下而上的自组装方法和单分散特性,有机分子,原子层沉积的氧化物和基于溶液的过程集成在一起的混合方法可提供更好的均匀充电能力。分子。我们研究了具有良好热学和电学稳定性的氧化还原活性二茂铁(Fc)和钴卟啉(CoP)以及金属链半导体(MOS)结构中的烷基链分子的势垒,以更好地了解电荷存储,电介质和分子层的界面特性。对于电荷存储,可以轻松地控制CoP的密度,以在室温下在单个单元中实现三个可区分的存储状态。此外,我们将CoP用作共振隧穿势垒(RTB),可进一步延长保留时间与编程时间的比值和循环寿命。演示了基于混合溶液的逐层(LBL)沉积方法,该方法具有苄基和烷基分子的各种功能端,以创建大面积,电牢固的分子结和绝缘层。我们的方法为基于硅或全有机的非易失性存储器的设计和制造提供了一种实用且有希望的方法。

著录项

  • 作者

    Shaw Jonathan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号