首页> 外文OA文献 >Energetics Of Control Moment Gyroscopes In Robotic Joint Actuation
【2h】

Energetics Of Control Moment Gyroscopes In Robotic Joint Actuation

机译:机器人关节致动中的控制力矩陀螺仪的能量学

摘要

Control moment gyros (CMGs) are an energy-efficient means of reactionless actuation currently used for attitude control in some spacecraft. In this work, CMGs are compared to direct-drive actuation for robotic applications. Torque, power, and energy of the gimbal motor are calculated using principles of angular momentum and virtual power. Scissored-pair CMGs produce output torque along the joint axis, facilitating comparison with joint motors. A mechanical coupling enforcing scissored-pair symmetry eliminates undesirable gyroscopic reaction torques and accompanying power costs while simplifying analysis. Strictly controlling CMG rotor speed doubles the CMGs? energy costs, whereas implementing minimal rotor speed control while assuming constant rotor speed reduces the energy costs without compromising the analyses. A single-link robot actuated with scissored-pair CMGs uses the same energy as direct drive for a large range of gimbal inertias and maximum gimbal angles. The transverse rate of the robot base does not affect this result if angular momentum is conserved about the joint axis. The equations of motion for an n-link robot with CMGs are presented in a recursive form. A two-link robot with orthogonal joint axes and axisymmetric bodies reduces to two, independent, single-link robots. In contrast, a two-link robot with parallel joint axes favors CMGs when the joints rotate with opposite sign, e.g. reaching motions. Direct drive is preferred when the joints act in unison, e.g. throwing motions. Conceptually, CMGs and direct drive may be analyzed as idealized body and joint torques, respectively. The mappings from actuator torques and velocities to generalized torques and velocities explain differences in power cost between the two actuation methods. A proposed power-optimal robot includes both types of actuation. The optimal distribution of joint and body torques for two- and three-link planar robots is calculated and applied to a three-link robot tracing a closed triangle. The combined actuation method easily outperforms the others in a Monte Carlo simulation. A planar robot with joint motors and CMGs currently in development illustrates the design of a CMG-actuated robot.
机译:控制力矩陀螺仪(CMG)是目前在某些航天器中用于姿态控制的无反应性致动的一种节能方式。在这项工作中,将CMG与机器人应用的直接驱动致动进行了比较。万向节电机的扭矩,功率和能量是使用角动量和虚功率原理计算的。剪式对CMG沿关节轴产生输出扭矩,从而便于与关节电机进行比较。机械联轴器具有剪式对对称性,消除了不希望的陀螺反作用转矩和随之而来的电力成本,同时简化了分析。严格控制CMG转子速度会使CMG倍增?能耗,而在假定转子恒定转速的情况下实施最小化的转子速度控制可降低能耗,而不会影响分析结果。用剪刀对CMG驱动的单连杆机器人在大范围的万向节惯性和最大万向节角度方面,使用与直接驱动相同的能量。如果围绕关节轴守着角动量,则机器人基座的横向速度不会影响该结果。具有CMG的n链接机器人的运动方程式以递归形式表示。具有正交关节轴和轴对称体的双连杆机器人简化为两个独立的单连杆机器人。相反,当关节以相反的符号旋转时,具有平行关节轴的双链接机器人会偏爱CMG。达到动作。当关节一致地作用时,例如,直接驱动是优选的。投掷动作。从概念上讲,CMG和直接驱动可以分别作为理想的车身扭矩和关节扭矩进行分析。从执行器扭矩和速度到广义扭矩和速度的映射解释了两种驱动方法之间的动力成本差异。提出的功率最佳机器人包括两种类型的致动。计算了两连杆和三连杆平面机器人的关节和身体扭矩的最佳分配,并将其应用于跟踪闭合三角形的三连杆机器人。在蒙特卡洛模拟中,组合的致动方法很容易胜过其他方法。当前正在开发的带有关节电机和CMG的平面机器人说明了由CMG驱动的机器人的设计。

著录项

  • 作者

    Brown Daniel;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号