首页> 外文OA文献 >Dynamic Programming Decomposition Methods For Capacity Allocation And Network Revenue Management Problems
【2h】

Dynamic Programming Decomposition Methods For Capacity Allocation And Network Revenue Management Problems

机译:容量分配和网络收益管理问题的动态规划分解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, we develop decomposition-based approximate dynamic programming methods for problems in capacity allocation and network revenue management. Noting that the dynamic programming formulation of these problems suffers from the “curse of dimensionality”, we demonstrate that a set of single-dimensional dynamic problems can be employed to provide approximate solutions to the original dynamic program. We show that the proposed approximations have two important characteristics: First, they provide relatively tight performance bounds on the optimal value of the stochastic optimization problem under consideration. Second, they give rise to policies that on average perform significantly better than a variety of benchmark methods found in the literature. We begin by focusing on network revenue management problems. We assume a profit maximizing airline operating a network of flight legs and processing itinerary requests arriving randomly over time. We consider several variants of the basic model and for each show that the dynamic programming formulation can be decomposed by flight legs into a set of single-leg revenue management problems. Furthermore, we demonstrate that the appropriate decomposition method gives rise to an upper bound on the optimal total expected revenue and that this upper bound is tighter than the upper bound provided by a deterministic linear program known from the literature. Finally, computational experiments show that the pol- icy based on the suggested value function approximation performs significantly better than a set of standard benchmark methods. In addition to network revenue management applications, we also consider a capacity allocation problem with a fixed amount of daily processing capacity. Here, the decision maker tries to minimize the cost of scheduling a set of jobs arriving randomly over time to be processed within a given planning horizon. The scheduling (holding) cost of a given job depends on its priority level and the length of its scheduled waiting period. In this setting, the decomposition approach that we suggest decomposes the problem by booking days. In particular, we replace the original dynamic program with a sequence of single-dimensional dynamic programs, each of which is concerned with capacity limitations on one particular booking day only. We show that our approach provides tight lower bounds on the minimum total expected holding cost. Furthermore, it gives rise to a scheduling policy that on average performs better than a variety of benchmark methods known from the literature.
机译:本文针对容量分配和网络收益管理中的问题,开发了基于分解的近似动态规划方法。注意到这些问题的动态规划公式来自“维数的诅咒”,我们证明了可以使用一组一维动态问题为原始动态程序提供近似解决方案。我们表明,提出的近似具有两个重要特征:首先,它们为所考虑的随机优化问题的最优值提供了相对严格的性能范围。其次,它们产生的政策平均表现要比文献中发现的各种基准方法好得多。我们首先关注网络收入管理问题。我们假设一个利润最大化的航空公司运营着一条直航网络,并处理随时间推移随机到达的行程请求。我们考虑了基本模型的几种变体,并且每种变体都表明,动态规划公式可以通过直腿分解为一系列单腿收益管理问题。此外,我们证明了适当的分解方法在最佳总预期收益上产生了一个上限,并且该上限比文献中已知的确定性线性程序所提供的上限更严格。最后,计算实验表明,基于建议值函数逼近的策略比一组标准基准方法的性能要好得多。除了网络收入管理应用程序,我们还考虑了固定每日处理量的容量分配问题。在这里,决策者试图使调度随时间推移随机到达的一组作业在给定的计划范围内进行处理的成本最小化。给定作业的计划(保持)成本取决于其优先级和计划的等待时间的长度。在这种情况下,我们建议使用分解方法通过预订天数来分解问题。特别是,我们用一系列一维动态程序代替了原始动态程序,其中每一个仅涉及一个特定预订日的容量限制。我们表明,我们的方法为最低总预期持有成本提供了严格的下限。此外,它产生了一种调度策略,其平均性能要比文献中已知的各种基准测试方法更好。

著录项

  • 作者

    Erdelyi Alexander;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号