首页> 外文OA文献 >Delay Line Based Adc And High Frequency Pulse Generation In Electrical Lc Latices
【2h】

Delay Line Based Adc And High Frequency Pulse Generation In Electrical Lc Latices

机译:电延迟网中基于延迟线的Adc和高频脉冲生成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis consists of two central goals. The first goal is to introduce an analog-todigital converter (ADC) in time-domain resolutions. With the down scaling of the minimal feature size of modern submicron CMOS technologies, time-to-digital conversion (TDC) is found very useful in many applications as well as analog-todigital converters. This is the case when it is profitable to replace badly scaling analog circuits with time-to-digital conversions. Since technology scaling implies voltage scaling while noise does not scale along, variability becomes more important. This requires more effort to be put into analog circuits that mostly leads to increased power consumption. However, digital speed does scale with technology. Since time-domain converters directly profit from enhanced speed performance, switching from the analog to the digital time domain can significantly reduce the power consumption for equal performance, especially for designs in sub-100nm technologies. In general, Analog-to-Digital conversion is performed in three steps: signal difference amplification, a zero crossing detector, and a succeeding logic encoder. The signal difference amplification is performed by amplifying the analog voltage (or current) level by a voltage (or current) amplifier. However, due to the device and voltage scaling in the CMOS technology, signal difference amplifications become more challenging to achieve low power consumption with high gain. For a time-domain ADC, as a different solution for signal difference amplification, delay amplification is used. In the first chapter, in order to verify the benefit from a time-domain ADC, a 125 MS/s 8bit delay-line based ADC is studied and implemented as a circuit using TSMC 65 nm CMOS process. Simulation results show that, with 1.95 MHz sinusoidal input, the ADC achieves 7.45 ENOB, a peak differential nonlinearity of 0.095 least significant bit (LSB), and a peak integral nonlinearity of 0.809 LSB with the power dissipation of 1.8 mW from a 1.2 V supply voltage. The second chapter studies the pulse generation in electrical LC lattice. When input voltage sources are applied to a two-dimensional nonlinear LC lattice, a constructive interference results in an output signal at the center node with boosted amplitude and sharpened pulse width compared to its original input signal. The chapter is focused on the theoretical and experimental study of certain nonlinear wave synthesis phenomena that appear on the two-dimensional nonlinear LC lattice. It is demonstrated how the nonlinearity can help in synthesizing high frequency and high amplitude wave pulse at the central nodes of the lattices. The LC lattice is implemented on PCB composed of voltagedependent capacitors and inductors, and for the intense nonlinearity, the capacitor is carefully chosen. At one horizontal and one vertical boundary, respectively 20 sinusoidal input sources are applied in phase. The peak-to-peak input amplitude is 1 V, and the frequency is 13.5 MHz, and the offset voltage for the voltage-dependent capacitor is 200 mV. Measurement results show that the amplitude is boosted to 7.5 V and the pulse width of the signal is narrowed from 74 ns to 14 ns at the central node.
机译:本论文包括两个主要目标。第一个目标是引入时域分辨率的模数转换器(ADC)。随着现代亚微米CMOS技术最小功能尺寸的缩小,发现时间数字转换(TDC)在许多应用以及模数转换器中都非常有用。当用时间到数字的转换来代替缩放比例差的模拟电路是有利的时候。由于技术缩放意味着电压缩放,而噪声却没有随之缩放,因此可变性变得更加重要。这需要投入更多的精力到模拟电路中,这主要导致功耗增加。但是,数字速度确实与技术成正比。由于时域转换器直接受益于提高的速度性能,因此从模拟时域切换到数字时域可以显着降低功耗以实现同等性能,尤其是对于100nm以下技术而言。通常,模数转换分为三个步骤:信号差放大,过零检测器和后继的逻辑编码器。通过由电压(或电流)放大器放大模拟电压(或电流)电平来执行信号差放大。但是,由于CMOS技术中的器件和电压缩放,信号差动放大在实现高功耗的低功耗方面变得更具挑战性。对于时域ADC,使用延迟放大作为信号差分放大的另一种解决方案。在第一章中,为了验证时域ADC的优势,研究了基于125 MS / s 8位延迟线的ADC,并将其实现为使用TSMC 65 nm CMOS工艺的电路。仿真结果表明,在1.95 MHz正弦输入下,ADC达到7.45 ENOB,峰值差分非线性为0.095最低有效位(LSB),峰值积分非线性为0.809 LSB,1.2 V电源的功耗为1.8 mW电压。第二章研究电LC晶格中的脉冲产生。当将输入电压源施加到二维非线性LC晶格时,相长干扰会导致中心节点处的输出信号与其原始输入信号相比具有增强的幅度和更尖锐的脉冲宽度。本章重点研究二维非线性LC晶格上出现的某些非线性波合成现象的理论和实验研究。证明了非线性如何有助于在晶格中心节点处合成高频和高振幅波脉冲。 LC晶格在由电压相关电容器和电感器组成的PCB上实现,并且对于强烈的非线性,请仔细选择电容器。在一个水平和一个垂直边界处,分别应用了20个正弦输入源。峰峰值输入幅度为1 V,频率为13.5 MHz,电压相关电容器的失调电压为200 mV。测量结果表明,在中心节点处,振幅提高到7.5 V,信号的脉冲宽度从74 ns缩小到14 ns。

著录项

  • 作者

    Park Jihyuk;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号