首页> 外文OA文献 >Minimal Solutions to Geometric Problems with Multiple Cameras or Multiple Sensor Modalities
【2h】

Minimal Solutions to Geometric Problems with Multiple Cameras or Multiple Sensor Modalities

机译:使用多个摄像机或多个传感器模式的几何问题的最小解决方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses minimal problems that involve multiple cameras or a combination of cameras with other sensors, particularly focusing on four cases: extrinsic calibration between a camera and a laser rangefinder (LRF); full calibration of an ultrasound array (US) with a camera; full calibration of a camera within a calibrated network; relative pose between axial systems. The first problem (LRF-Camera) is highly important in the context of mobile robotics in order to fuse the information of an LRF and a Camera in localization maps. The second problem (US-Camera) is becoming increasingly relevant in the context of medical imaging to perform guided intervention and 3D reconstruction with US probes. Both these problems use a planar calibration target to obtain a minimal solution from 3 and 4 correspondences respectively. They are formulated as the registration between planes detected by the camera and lines detected by either the LRF or the US. The third problem (Camera-Network) is concerned with two application scenarios: addition of a new camera to a calibrated network, and tracking of a hand-held camera within the field of view of a calibrated network. The last problem (Axial System) has its main application in motion estimation of stereo camera pairs. Both these problems introduce a 5-dimensional linear subspace to model line incidence relations of an axial system, of which a pair of calibrated cameras is a particular example. In the Camera-Network problem a generalized fundamental matrix is derived to obtain a 11-correspondence minimal solution. In the Axial System problem a generalized essential matrix is derived to obtain a 10-correspondence non-minimal solution. Although it should be possible to solve this last problem with as few as 6 correspondences, the proposed solution is the closest to minimal in the literature.Additionally this thesis addresses the use of the RANSAC framework in the context of the problems mentioned above. While RANSAC is the most widely used method in computer vision for robust estimation when minimal solutions are available, it cannot be applied directly to some of the problems discussed here. A new framework -- multi-RANSAC -- is presented as an adaptation of RANSAC to problems with multiple sampling datasets. Problems with multiple cameras or multiple sensors often fall in this category and thus this new framework can greatly improve their results. Its applicability is demonstrated in both the US-Camera and the Camera-Network problems.
机译:本论文解决了涉及多个摄像机或摄像机与其他传感器组合的最小问题,特别是针对以下四种情况:摄像机与激光测距仪(LRF)之间的外部校准;用相机对超声阵列(US)进行全面校准;在校准网络中对摄像机进行全面校准;轴向系统之间的相对姿势。为了将LRF和Camera的信息融合在本地化地图中,第一个问题(LRF-Camera)在移动机器人技术中非常重要。第二个问题(US-Camera)在医学成像的背景下变得越来越重要,以使用US探头执行引导性干预和3D重建。这两个问题都使用平面校准目标分别从3和4个对应关系中获得最小解。它们被表述为摄像机检测到的飞机与LRF或US检测到的线之间的配准。第三个问题(摄像机网络)与两个应用场景有关:将新摄像机添加到已校准的网络中,以及在已校准网络的视场内跟踪手持摄像机。最后一个问题(轴向系统)主要应用于立体摄像机对的运动估计。这两个问题都引入了一个5维线性子空间来建模轴向系统的线入射关系,其中一对经过校准的摄像机就是一个特定示例。在摄像机网络问题中,导出了一个基本矩阵,以获得11对应的最小解。在轴向系统问题中,导出了一个广义基本矩阵以获得10对应的非最小解。尽管应该有可能使用最少6个对应来解决最后一个问题,但所提出的解决方案在文献中是最接近最小的。此外,本文针对上述问题,解决了RANSAC框架的使用问题。当可用最小解决方案时,RANSAC是计算机视觉中用于稳健估计的最广泛使用的方法,但它不能直接应用于此处讨论的某些问题。提出了一个新的框架-multi-RANSAC-作为RANSAC对多个采样数据集问题的适应。多个摄像机或多个传感器的问题通常属于此类,因此,这种新框架可以大大改善其结果。在美国相机和相机网络问题中都证明了其适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号