首页> 外文OA文献 >Matrix realization of a pair of tableaux with key and shuffling condition
【2h】

Matrix realization of a pair of tableaux with key and shuffling condition

机译:具有关键和混洗条件的一对tableaux的矩阵实现

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given a pair of tableaux (T ;K(¾)), where T is a skew-tableau in thealphabet [t] and K(¾) is the key associated with ¾ 2 St, with the same evaluationas T , we consider the problem of a matrix realization for (T ;K(¾)) over a localprincipal ideal domain [1, 2, 3, 4, 5, 6]. It has been shown that the pair (T ;K(¾))has a matrix realization only if the word of T is in the plactic class of K(¾) [5].This condition has also been proved su±cient when ¾ is the identity [1, 2, 4], thereverse permutation in St [2, 3], or any permutation in S3 [6]. In each of these cases,the plactic class of K(¾) may be described by shu²ing together their columns. Fort ¸ 4 this is no longer true for an arbitrary permutation, but shu²ing together thecolumns of a key always leads to a congruent word. In [17] A. Lascoux and M. P.SchÄutzenberger have introduced the notions of frank word and key. It is a simplederivation on Greene's theorem [11] that words congruent with a key, and frankwords are dual of each other as biwords. In this paper, we exhibit, for any ¾ 2 St,a matrix realization for the pair (T ;K(¾)), when the word of T is a shu²e of thecolumns of K(¾). This construction is based on a biword de¯ned by the columns ofthe key and the places of their letters in the skew-tableau T . The places of theseletters are row words which are shuffle components of a frank word.
机译:给定一对表格(T; K(¾)),其中T是字母[t]中的歪斜表格,而K(¾)是与¾2 St相关的键,并且评估与T相同,我们考虑该问题局部主理想域[1、2、3、4、5、6]上(T; K(3/4))的矩阵实现的示意图。研究表明,只有当T的单词在K(¾)的实用类中时,对(T; K(¾))才具有矩阵实现。[5]当¾被证明时,该条件也是足够的。是身份[1、2、4],St [2、3]中的反向排列或S3 [6]中的任何排列。在每种情况下,可以通过将它们的列合并在一起来描述K(¾)的实际类别。 ¸4堡对于任意排列不再是正确的,但是将键的列锁在一起总是可以得到一个全等的单词。在[17]中,A。Lascoux和M. P.Schäutzenberger引入了坦率的单词和键的概念。这是格林定理[11]的一个简单推导,即单词与键是一致的,而坦率词作为双字是彼此对偶的。在本文中,当T的单词是K(¾)的列数时,对于任何¾2 St,我们都展示该对(T; K(¾))的矩阵实现。此构造基于一个双字,该双字由键的列及其字母在偏斜表T中的位置定义。这些字母的位置是行词,它们是坦率单词的随机组成部分。

著录项

  • 作者

    Azenhas Olga; Mamede Ricardo;

  • 作者单位
  • 年度 2005
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号