首页> 外文OA文献 >Inband Full-duplex Wireless Communications for Dynamic Spectrum Sharing Systems
【2h】

Inband Full-duplex Wireless Communications for Dynamic Spectrum Sharing Systems

机译:动态频谱共享系统的带内全双工无线通信

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the last decade, there has been an exponential growth in the wireless demand, driven by an increase in the number of devices, users, and applications. Combined with an increase in the number of connections (due to Internet of things or IoT) and the spike in mobile video, this growth led to a spectrum crisis. To face this problem, various solutions have been proposed, including more cell densification and higher spectrum efficiency. Industry and academia are gearing to develop new wireless technologies such as full-duplex (FD) communications and massive multiple-input and multiple-output (MIMO) to enhance network performance and improve user experience. To solve the aforementioned spectrum crisis, self-interference-suppression (SIS) techniques have been developed in the previous few years to enable inband FD communications (i.e., simultaneous transmission and reception over the same channel). Traditionally, bidirectional communications can be achieved by separating the forward and reverse links in time, frequency, or code. The challenge in achieving simultaneous transmission and reception over the same band is that the received power of the intended signal is much smaller than the power of the transmitted signal generated at the same node. While this node is receiving, its own transmission is considered as self-interference, which could overwhelm the receiver and prevent correct decoding. Inspired by the recent developments in FD communications, in this dissertation, we incorporate SIS techniques in the design of wireless systems, specifically targeting dynamic spectrum sharing systems. First, we consider an opportunistic spectrum access (OSA) network in which secondary users (SUs) are equipped with partial/complete SIS, enabling them to operate in either simultaneous transmit-and-sense (TS) mode or simultaneous transmit-and-receive (TR) mode. We analytically study the performance metrics for the two modes. From this analysis, we evaluate the sensing/throughput tradeoff. Motivated by the competing goals of primary user (PU) protection (in the TS mode) and SU performance (in the TR mode), we present an optimal adaptive switching strategy and an associated communication protocol for FD OSA systems. Specifically, we optimize the spectrum-awareness/efficiency tradeoff by allowing the SU link to adaptively switch between various modes, depending on the forecasted PU dynamics. In practice, SIS is imperfect, resulting in residual self-interference that degrades the sensing performance in the TS mode. Accordingly, we study different spectrum sensing techniques in the TS mode, while illustrating their accuracy-complexity tradeoffs. Second, we consider the coexistence problem of concurrent transmissions between multiple FD-enabled links with different SIS capabilities; each link can operate in either FD or half-duplex mode. We determine the optimal mode for each link while taking into account residual and mutual interferences. The interactions between links are studied via a Bayesian game for which the Bayesian Nash equilibrium is derived. Finally, we consider the coexistence between FD-enabled Wi-Fi systems and LTE-unlicensed small cells in the 5 GHz bands. We introduce MAC-layer procedures and propose an adaptation scheme for the clear channel assessment (CCA) threshold of the Wi-Fi system. Our objective is to maximize the spatial reuse while maintaining fairness between LTE-U and Wi-Fi systems. We evaluate the performance of various proposed schemes in this dissertation using numerical results, simulations, and hardware USRP experiments.
机译:在过去的十年中,由于设备,用户和应用程序数量的增加,无线需求呈指数级增长。加上连接数量的增加(由于物联网或物联网的原因)以及移动视频的激增,这种增长导致了频谱危机。为了解决这个问题,已经提出了各种解决方案,包括更多的细胞致密化和更高的频谱效率。工业界和学术界正在努力开发新的无线技术,例如全双工(FD)通信和大规模的多输入多输出(MIMO),以增强网络性能并改善用户体验。为了解决上述频谱危机,在过去几年中已经开发了自干扰抑制(SIS)技术以实现带内FD通信(即,在同一信道上同时进行发送和接收)。传统上,可以通过在时间,频率或代码上分离前向和反向链路来实现双向通信。在同一频带上实现同时发送和接收的挑战在于,预期信号的接收功率远小于在同一节点上生成的发送信号的功率。当此节点正在接收时,其自身的传输被视为自干扰,这可能会使接收器不堪重负,并阻止正确的解码。受FD通信的最新发展启发,本文将SIS技术应用于无线系统的设计中,特别针对动态频谱共享系统。首先,我们考虑机会频谱接入(OSA)网络,其中辅助用户(SU)配备有部分/完整的SIS,使他们能够以同时发送和接收(TS)模式或同时发送和接收的方式进行操作(TR)模式。我们分析研究两种模式的性能指标。通过此分析,我们评估了感测/吞吐量的权衡。基于主要用户(PU)保护(在TS模式下)和SU性能(在TR模式下)的竞争目标,我们提出了针对FD OSA系统的最佳自适应切换策略和相关的通信协议。具体来说,我们通过允许SU链路根据预测的PU动态自适应地在各种模式之间切换来优化频谱感知/效率权衡。实际上,SIS是不完善的,会导致残留的自干扰,从而降低TS模式下的传感性能。因此,我们在TS模式下研究了不同的频谱检测技术,同时说明了它们的精度-复杂度之间的取舍。其次,我们考虑了具有不同SIS功能的多个启用FD的链路之间并发传输的共存问题。每个链接可以以FD或半双工模式运行。我们在考虑残留和相互干扰的情况下确定每个链路的最佳模式。通过贝叶斯博弈研究链接之间的相互作用,由此得出贝叶斯纳什均衡。最后,我们考虑了启用FD的Wi-Fi系统与5 GHz频段中未经LTE许可的小型小区之间的共存。我们介绍了MAC层程序,并针对Wi-Fi系统的明信道评估(CCA)阈值提出了一种自适应方案。我们的目标是在保持LTE-U和Wi-Fi系统之间的公平性的同时,最大化空间复用。我们使用数值结果,仿真和硬件USRP实验评估了本文提出的各种方案的性能。

著录项

  • 作者

    Afifi Ahmed Wessam;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号