首页> 外文OA文献 >Molecular dynamics simulations of brittle fracture in amorphous silica
【2h】

Molecular dynamics simulations of brittle fracture in amorphous silica

机译:非晶态二氧化硅脆性断裂的分子动力学模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Fracture in brittle materials under a macroscopic load, results from the propagation of atomic-scale defects/cracks under the influence of a local stress field. These local stress fields are significantly higher than the macroscopic stress applied, causing local rearrangement of atoms around the crack tip and a consequent straining of atomic bonds that ultimately break, leading to separation of the material. The brittle fracture process has been a subject of many simulations and experiments, but the exact nature of atomic rearrangement that occurs in the regions of high stress has not yet been clearly identified. Thus, a primary objective was to accurately characterize the atomic restructuring in these critical regions. The method of molecular dynamics (MD), a widely used atomistic computation tool, was used to study the atomic-scale dynamics that take place during fracture of a typical brittle material---amorphous silica (a-SiO2). The interatomic interactions were represented by potential functions derived from first-principles. The effects of charge-transfer and temperature on the fracture process of a-SiO2 samples of different densities were investigated as a function of uniaxial strain-rates (0.1/ps-0.005/ps). A mechanism involving growth and coalescence of voids previously identified to underlie the process of brittle fracture was studied in detail in this thesis as a function of interatomic potential function, charge transfer and temperature. The regions surrounding these voids were found to be characterized by edge-sharing silica tetrahedra, while the rest of the material retained the bulk structure (corner-sharing tetrahedra) of silica glass. A secondary objective of this research work was to develop multiscale methodologies capable of modeling typical 'materials' problems like fracture. A global representation of the fracture process needs a seamless coupling of techniques capable of modeling different length and time scales. Specifically, far away from the critical regions, where the system is in elastic conditions, it is computationally prudent as well as scientifically elegant to use continuum-level simulation schemes like finite elements (FE) and finite difference time domain methods (FDTD) rather than atomistics, and only use atomistic simulations to model the highly strained regions. In this work, a continuum-FDTD region was coupled to an atomistic-MD region to study the propagation characteristics of a stress wave with broadband spectral features. The 'mismatch' in the coupling was quantified by analyzing the amount of reflection of the probing wave from the FDTD-MD interface. The above described work forms the basis for future fracture studies.
机译:宏观载荷下脆性材料的断裂是由于局部应力场的影响下原子尺度缺陷/裂纹的传播所致。这些局部应力场显着高于所施加的宏观应力,从而导致裂纹尖端周围的原子发生局部重排,从而导致原子键的应变最终破裂,从而导致材料分离。脆性断裂过程已成为许多模拟和实验的主题,但尚未明确识别出在高应力区域发生的原子重排的确切性质。因此,主要目的是准确表征这些关键区域的原子结构。分子动力学方法(MD)是一种广泛使用的原子计算工具,用于研究在典型的脆性材料-无定形二氧化硅(a-SiO2)断裂过程中发生的原子尺度动力学。原子间相互作用以源自第一性原理的潜在功能表示。研究了电荷转移和温度对不同密度的a-SiO2样品断裂过程的影响,该断裂过程是单轴应变率(0.1 / ps-0.005 / ps)的函数。本论文详细研究了一种机制,该机制涉及先前被确定为脆性断裂过程基础的空隙的生长和聚结,是原子间电势函数,电荷转移和温度的函数。发现围绕这些空隙的区域的特征在于边缘共享的二氧化硅四面体,而其余材料保留了二氧化硅玻璃的整体结构(角共享的四面体)。这项研究工作的第二个目标是开发能够模拟典型“材料”问题(例如断裂)的多尺度方法。断裂过程的全局表示需要能够建模不同长度和时间尺度的技术的无缝结合。具体而言,在远离系统处于弹性状态的关键区域的情况下,使用连续性级别的仿真方案(例如有限元(FE)和时差有限时域方法(FDTD))在计算上要谨慎并且在科学上也要优雅。原子学,并且仅使用原子仿真来模拟高应变区域。在这项工作中,将连续的FDTD区域与原子MD区域耦合,以研究具有宽带光谱特征的应力波的传播特性。通过分析来自FDTD-MD界面的探测波的反射量,可以量化耦合中的“不匹配”。上述工作构成了未来骨折研究的基础。

著录项

  • 作者

    Muralidharan Krishna;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号