首页> 外文OA文献 >Evaluation of SMP Shared Memory Machines for Use with In-Memory and OpenMP Big Data Applications
【2h】

Evaluation of SMP Shared Memory Machines for Use with In-Memory and OpenMP Big Data Applications

机译:评估用于内存和OpenMP大数据应用程序的SMP共享内存机器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

While distributed memory systems have shaped the field of distributed systems for decades, the demand for many-core shared memory resources is increasing. Symmetric Multiprocessor Systems (SMPs) have become increasingly important recently among a wide array of disciplines, ranging from Bioinformatics to astrophysics, and beyond. With the increase in big data computing, the size and scope of traditional commodity server systems is often outpaced. While some big data applications can be mapped to distributed memory systems found through many cluster and cloud technologies today, this effort represents a large barrier of entry that some projects cannot cross. Shared memory SMP systems look to effectively and efficiently fill this niche within distributed systems by providing high throughput and performance with minimized development effort, as the computing environment often represents what many researchers are already familiar with. In this paper, we look at the use of two common shared memory systems, the ScaleMP vSMP virtualized SMP deployment at Indiana University, and the SGI UV architecture deployed at University of Arizona. While both systems are notably different in their design, their potential impact on computing is remarkably similar. As such, we look to compare each system first under a set of OpenMP threaded benchmarks via the SPEC group, and to follow up with our experience using each machine for Trinity de-novo assembly. We find both SMP systems are well suited to support various big data applications, with the newer vSMP deployment often slightly faster; however, certain caveats and performance considerations are necessary when considering such SMP systems.
机译:尽管分布式存储器系统已经影响了分布式系统领域数十年,但对多核共享存储器资源的需求却在增长。对称多处理器系统(SMP)最近在从生物信息学到天体物理学等众多学科中日益重要。随着大数据计算的增长,传统商品服务器系统的大小和范围常常超过了。虽然某些大数据应用程序可以映射到当今通过许多集群和云技术找到的分布式内存系统,但是这种努力代表了一些项目无法跨越的巨大进入壁垒。共享内存SMP系统希望通过以最小的开发工作量提供高吞吐量和性能,从而有效而高效地填补分布式系统中的这一空白,因为计算环境通常代表了许多研究人员已经熟悉的内容。在本文中,我们着眼于两个常见共享存储系统的使用,分别是印第安纳大学的ScaleMP vSMP虚拟化SMP部署和亚利桑那大学的SGI UV体系结构。尽管两个系统在设计上都有很大不同,但是它们对计算的潜在影响却非常相似。因此,我们希望通过SPEC小组在一组OpenMP线程基准下首先比较每个系统,并继续使用我们在Trinity de-novo组装中使用每台机器的经验。我们发现两个SMP系统都非常适合支持各种大数据应用程序,而更新的vSMP部署通常会稍快一些。但是,在考虑这种SMP系统时,某些警告和性能考虑是必要的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号