首页> 外文OA文献 >Attractors for Lyapunov cases of the complex Ginzburg-Landau equation
【2h】

Attractors for Lyapunov cases of the complex Ginzburg-Landau equation

机译:复金茨堡-朗道方程的Lyapunov情形的吸引子

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A special case of the complex Ginzburg-Landau (CGL) equation possessing a Lyapunov functional is identified. The global attractor of this Lyapunov CGL (LCGL) is studied in one spatial dimension with periodic boundary conditions. The LCGL may be viewed as a dissipative perturbation of the nonlinear Schrodinger equation (NLS), a completely integrable Hamiltonian system. The o-limit sets of the LCGL are identified as compact, connected unions of subsets of the stationary points of the flow. The stationary points do not depend on the strength of the perturbation, and so neither do the o-limit sets. However, the basins of attraction do depend sensitively on the perturbation strength. To determine the stability of the o-limit sets, the global Lyapunov functional is studied. Using the integrable NLS machinery, the second variation of the Lyapunov functional is diagonalized. An analysis of the diagonal elements yields that certain LCGL stationary points are stable. We are able to analyze the basins of attraction for a planar toy problem, which like the LCGL, is a dissipative perturbation of a Hamiltonian system. For this problem, almost every phase point is in a basin of attraction of an asymptotically stable stationary point. As the perturbation tends to zero, these basins become intermingled and the event of a fixed phase point being captured into a particular basin becomes probabilistic. Formulas for computing the probabilities of capture are given. These formulas are substantiated through a formal asymptotic analysis and numerical experiments. Such a probabilistic description of the basins of attraction is not completed for the infinite dimensional LCGL.
机译:确定了具有Lyapunov泛函的复杂Ginzburg-Landau(CGL)方程的特例。该Lyapunov CGL(LCGL)的全局吸引子是在具有周期性边界条件的一个空间维度上进行研究的。 LCGL可以看作是非线性Schrodinger方程(NLS)(一种完全可积分的哈密顿系统)的耗散扰动。 LCGL的O极限集被标识为流的固定点子集的紧凑的,相互连接的并集。固定点不依赖于扰动的强度,o极限集也不依赖于扰动的强度。然而,吸引盆地确实敏感地取决于扰动强度。为了确定o极限集的稳定性,研究了全局Lyapunov函数。使用可集成的NLS机械,将Lyapunov功能的第二个变体对角化。对角线元素的分析得出某些LCGL固定点是稳定的。我们能够分析平面玩具问题的吸引盆,像LCGL一样,它是哈密顿系统的耗散扰动。对于这个问题,几乎每个相位点都在一个渐近稳定的固定点的吸引盆中。随着摄动趋于零,这些盆地变得混杂,固定相点被捕获到特定盆地的事件变得概率很大。给出了计算捕获概率的公式。这些公式通过正式的渐近分析和数值实验得到证实。对于无限尺寸的LCGL,尚未完成对吸引盆地的这种概率描述。

著录项

  • 作者

    Horsch Karla 1968-;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号