首页> 外文OA文献 >Effects of Honey Bee (Apis mellifera) Intracolonial Genetic Diversity on the Acquisition and Allocation of Protein
【2h】

Effects of Honey Bee (Apis mellifera) Intracolonial Genetic Diversity on the Acquisition and Allocation of Protein

机译:蜜蜂群体内遗传多样性对蛋白质获取和分配的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Honey bees (Apis mellifera) are the most economically important insect pollinator of agricultural crops in the United States. Honey bee colonies are required for pollination of approximately one-third of the nation’s fruit, vegetable, nut, and forage crops, with an estimated annual value in the billions of dollars. The economic value of a honey bee colony comes from its population size, as large colonies provide the necessary foraging force required for large-scale crop pollination services. A major component of colony strength is its genetic diversity, a consequence of the reproductive mating strategy of the queen known as polyandry. Despite some inherent risks of multiple mating, several studies have demonstrated significant advantages of intracolonial genetic diversity for honey bee colony productivity. Colony-level benefits include better disease resistance, more stable brood nest thermoregulation, and greater colony growth. Instrumental insemination of honey bee queens is a technique to precisely control queen mating, and thereby creates the opportunity to investigate the effects of intracolonial genetic diversity on colony performance. In this dissertation, I first consider the effects of intracolonial genetic diversity on pollen foraging using colonies headed by queens which were instrumentally inseminated with either one or twenty drones to generate colonies of very high or very low intracolonial genetic diversity, respectively. I found that colonies with high intracolonial genetic diversity amass significantly more pollen and rear more brood than colonies with low intracolonial genetic diversity. Of particular interest, colonies with low intracolonial genetic diversity collected a significantly greater variety of pollen types. I discuss these results in the context of scouting and recruiting, and suggest a more efficient foraging strategy exists among genetically diverse colonies. While intracolonial genetic diversity is positively correlated with collected pollen, its effect on the colony’s ability to process and distribute inbound protein resources is unknown. Again using colonies headed by queens instrumentally inseminated with either one or twenty drones, I studied the effects of intracolonial genetic diversity on pollen consumption and digestion by nurse bees, as well as protein allocation among nestmates by assessing total soluble protein concentration of late instar larvae, and total soluble hemolymph protein concentration in both nurses and pollen foragers. I found that nurse bees from colonies with high intracolonial genetic diversity consume and process more protein than nurses from colonies with low intracolonial genetic diversity, even when given equal access to protein resources. Further, both forager hemolymph protein concentrations and larval total protein concentrations were higher among the colonies with high intracolonial genetic diversity. My findings suggest that protein processing and distribution within a honey bee colony is affected by the social context of the hive. I discuss “worker policing”, and the role of nurse bees in modulating the foraging effort. Finally, I assess the standing genetic variability among several colonies sourced from different genetic and geographic locations. Using microsatellite DNA from workers sampled from each colony, I determined allelic richness, gene diversity, and effective mating frequency for each genetic line. I found differences in all three metrics between lines, and for one line in particular, there was no correlation with genetic variation and effective mating frequency, suggesting non-random mating. My results showed very different levels of intracolonial genetic diversity among naturally mated queens. Because of its impact on colony performance, the importance of maintaining genetic diversity in breeding populations is discussed.
机译:蜜蜂(Apis mellifera)是美国农作物中经济上最重要的昆虫传粉者。蜜蜂殖民地是该国大约三分之一的水果,蔬菜,坚果和饲料作物授粉所必需的,估计年产值达数十亿美元。蜜蜂群体的经济价值来自其人口规模,因为大型群体提供了大规模农作物授粉服务所需的必要觅食力。菌落强度的主要组成部分是遗传多样性,这是女王一妻多夫制繁殖交配策略的结果。尽管存在多次交配的固有风险,但多项研究表明,殖民地内遗传多样性对于蜜蜂群体的生产力具有显着优势。菌落水平的好处包括更好的抗病性,更稳定的巢巢温度调节和更大的菌落生长。蜂皇后的人工授精是一种精确控制皇后交配的技术,从而为研究殖民地内遗传多样性对菌落性能的影响提供了机会。在这篇论文中,我首先考虑使用皇后为首的菌落对殖民地内部遗传多样性对花粉觅食的影响,这些蚁后分别用一种或二十种无人机进行授精,以分别产生非常高或非常低的殖民地内部遗传多样性。我发现,与殖民地内部遗传多样性低的殖民地相比,殖民地内部遗传多样性高的殖民地积聚了更多的花粉和更多的后代。特别值得关注的是,殖民地内遗传多样性低的菌落收集到的花粉类型明显增多。我在搜寻和募集的背景下讨论了这些结果,并提出了在遗传多样的菌落之间存在更有效的觅食策略。虽然殖民地内部的遗传多样性与采集的花粉呈正相关,但其对菌落加工和分配入库蛋白质资源能力的影响尚不清楚。我再次使用以一匹或二十只无人机人工授精的皇后为首的菌落,通过评估晚in幼虫的总可溶性蛋白质浓度,研究了殖民地内遗传多样性对花粉消耗和哺乳蜜蜂消化以及巢内蛋白质分配的影响,和花粉觅食者的总可溶性血淋巴蛋白浓度。我发现,与殖民地内遗传多样性低的殖民地相比,来自殖民地内遗传多样性较高的殖民地的养蜂消耗和加工更多的蛋白质,即使在获得平等蛋白质资源的条件下也是如此。此外,在具有高菌落内遗传多样性的菌落中,觅食的血淋巴蛋白浓度和幼虫总蛋白浓度均较高。我的发现表明,蜂巢中蛋白质的加工和分布受蜂巢的社会环境影响。我将讨论“工人警务”,以及蜜蜂在调节觅食工作中的作用。最后,我评估了来自不同遗传和地理位置的几个菌落之间的常规遗传变异性。使用从每个殖民地采样的工人的微卫星DNA,我确定了每个遗传系的等位基因丰富度,基因多样性和有效交配频率。我发现品系之间的所有三个指标均存在差异,特别是其中一品系与遗传变异和有效交配频率没有关联,这表明是非随机交配。我的结果表明,在自然交配的女王中,殖民地内部的遗传多样性水平差异很大。由于其对菌落性能的影响,讨论了维持繁殖种群遗传多样性的重要性。

著录项

  • 作者

    Eckholm Bruce James;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号