首页> 外文OA文献 >Combined Use of Vegetation and Water Indices from Remotely-Sensed AVIRIS and MODIS Data to Monitor Riparian and Semiarid Vegetation
【2h】

Combined Use of Vegetation and Water Indices from Remotely-Sensed AVIRIS and MODIS Data to Monitor Riparian and Semiarid Vegetation

机译:结合使用遥感AVIRIS和MODIS数据中的植被和水指标来监测河岸和半干旱植被

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objectives of dissertation were to examine vegetation and water indices from AVIRIS and MODIS data for monitoring semiarid and upland vegetation communities related with moisture condition and their spatial and temporal dependencies in estimating evapotranspiration (ET). The performance of various water indices, including the normalized difference water index (NDWI) and land surface water index (LSWI), with the chlorophyll-based vegetation indices (VIs), the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) was evaluated in 1) investigating sensitivity of vegetation and land surface moisture condition 2) finding optimal indices in detecting seasonal variations in vegetation water status at the landscape level, and 3) their spatial and temporal scale dependency on estimating ET. The analyses were accomplished through field radiometric measurement, airborne-based and satellite data processing accompanied with water flux data.The results of these studies showed vegetation and landscape moisture condition could be identified in VI - WI scatter-plot. LSWI (2100) showed the biggest sensitivity to variation of vegetation and background soil moisture condition as well. Multi-temporal MODIS data analysis was able to show water use characteristic of riparian vegetation and upland vegetation. Results showed water use characteristics of riparian vegetation are relatively insensitive to summer monsoon pulse, while upland vegetation is highly tied to summer monsoon rain. The relationship between water flux measurement from eddy covariance tower and satellite data has shown that MODIS derived EVI and LSWI (2100) have similar merit to estimate ET rate, but better correlation was observed from the relationship between MODIS EVI and ET.Pixel aggregation results using fine resolution AVIRIS data showed moderate resolution spatial scale 250m or 500m, best predicted ET rates over all study areas. Surface fluxes temporally aggregated to weekly or biweekly intervals showed the strongest ET versus EVI relationships. ET measured at flux towers can be scaled over heterogeneous vegetation associations by simple statistical methods that use meteorological data and flux tower data as ground input, and using the MODIS Enhanced Vegetation Index (EVI) as the only source of remote sensing data.
机译:本文的目的是从AVIRIS和MODIS数据中检查植被和水分指数,以监测与水分状况及其时空相关性相关的半干旱和高地植被群落,以估算蒸散量(ET)。各种水分指数的性能,包括归一化差异水指数(NDWI)和地表水指数(LSWI),基于叶绿素的植被指数(VIs),归一化差异植被指数(NDVI)和增强植被指数(EVI) )在1)评估植被和土地表面湿度条件的敏感性中进行了评估; 2)在景观水平上检测植被水分状况的季节性变化时找到了最佳指标,并且3)它们在空间和时间尺度上依赖于估算ET。这些分析是通过野外辐射测量,基于机载和卫星数据处理以及水通量数据完成的。这些研究结果表明,可以在VI-WI散点图中识别植被和景观湿度条件。 LSWI(2100)对植被和背景土壤湿度条件的变化也表现出最大的敏感性。多时相MODIS数据分析能够显示河岸植被和高地植被的用水特征。结果表明,河岸植被的水分利用特征对夏季风脉搏相对不敏感,而陆地植被与夏季风雨密切相关。涡度协方差塔的水通量测量与卫星数据之间的关系表明,MODIS推导的EVI和LSWI(2100)在估算ET速率方面具有相似的优点,但从MODIS EVI和ET之间的关系观察到更好的相关性。高分辨率AVIRIS数据显示在所有研究区域中分辨率为250m或500m的中等分辨率空间,最佳预测的ET率。时间上聚集到每周或每两周一次的表面通量显示出最强的ET与EVI关系。通过使用气象数据和通量塔数据作为地面输入,并使用MODIS增强植被指数(EVI)作为唯一遥感数据的简单统计方法,可以在非均质植被协会上缩放在通量塔处测得的ET。

著录项

  • 作者

    Kim Ho J;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 EN
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号