首页> 外文OA文献 >Generation of Individualized Treatment Decision Tree Algorithm with Application to Randomized Control Trials and Electronic Medical Record Data
【2h】

Generation of Individualized Treatment Decision Tree Algorithm with Application to Randomized Control Trials and Electronic Medical Record Data

机译:个体化治疗决策树算法的生成及其在随机对照试验和电子病历数据中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With new treatments and novel technology available, personalized medicine has become a key topic in the new era of healthcare. Traditional statistical methods for personalized medicine and subgroup identification primarily focus on single treatment or two arm randomized control trials (RCTs). With restricted inclusion and exclusion criteria, data from RCTs may not reflect real world treatment effectiveness. However, electronic medical records (EMR) offers an alternative venue. In this paper, we propose a general framework to identify individualized treatment rule (ITR), which connects the subgroup identification methods and ITR. It is applicable to both RCT and EMR data. Given the large scale of EMR datasets, we develop a recursive partitioning algorithm to solve the problem (ITR-Tree). A variable importance measure is also developed for personalized medicine using random forest. We demonstrate our method through simulations, and apply ITR-Tree to datasets from diabetes studies using both RCT and EMR data. Software package is available at https://github.com/jinjinzhou/ITR.Tree.
机译:随着新疗法和新技术的出现,个性化医学已成为医疗保健新时代的关键主题。用于个性化药物和亚组识别的传统统计方法主要集中于单药治疗或两臂随机对照试验(RCT)。由于纳入和排除标准受到限制,来自RCT的数据可能无法反映现实世界的治疗效果。但是,电子病历(EMR)提供了另一种场所。在本文中,我们提出了识别个体化治疗规则(ITR)的通用框架,该框架将亚组识别方法与ITR联系起来。它适用于RCT和EMR数据。鉴于EMR数据集规模庞大,我们开发了一种递归分区算法来解决该问题(ITR-Tree)。还为使用随机森林的个性化药物开发了可变重要性度量。我们通过仿真演示了我们的方法,并将ITR-Tree应用到使用RCT和EMR数据的糖尿病研究数据集中。软件包可从https://github.com/jinjinzhou/ITR.Tree获得。

著录项

  • 作者

    Doubleday Kevin;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号