首页> 外文OA文献 >Fate(s) of Injected CO₂ in a Coal-Bearing Formation, Louisiana, Gulf Coast Basin: Chemical and Isotopic Tracers of Microbial-Brine-Rock-CO₂ Interactions
【2h】

Fate(s) of Injected CO₂ in a Coal-Bearing Formation, Louisiana, Gulf Coast Basin: Chemical and Isotopic Tracers of Microbial-Brine-Rock-CO₂ Interactions

机译:墨西哥湾海岸盆地路易斯安那州一个含煤地层中注入的CO 2的命运:微生物与盐水-岩石-CO 2相互作用的化学和同位素示踪剂

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Coal beds are one of the most promising reservoirs for geologic carbon dioxide (CO₂) sequestration, as CO₂ can strongly adsorb onto organic matter and displace methane; however, little is known about the long-term fate of CO₂ sequestered in coal beds. The "2800' sand" of the Olla oil field is a coal-bearing, oil and gas-producing reservoir of the Paleocene–Eocene Wilcox Group in north-central Louisiana. In the 1980s, this field, specifically the 2800' sand, was flooded with CO₂ in an enhanced oil recovery (EOR) project, with 9.0×10⁷m³ of CO₂ remaining in the 2800' sand after injection ceased. This study utilized isotopic and geochemical tracers from co-produced natural gas, oil and brine from reservoirs located stratigraphically above, below and within the 2800' sand to determine the fate of the remaining EOR-CO₂, examining the possibilities of CO₂ migration, dissolution, mineral trapping, gas-phase trapping, and sorption to coal beds, while also testing a previous hypothesis that EOR-CO₂ may have been converted by microbes (CO₂-reducing methanogens) into methane, creating a microbial "hotspot". Reservoirs stratigraphically-comparable to the 2800' sand, but located in adjacent oil fields across a 90-km transect were sampled to investigate regional trends in gas composition, brine chemistry and microbial activity. The source field for the EOR-CO₂, the Black Lake Field, was also sampled to establish the δ¹³C-CO₂ value of the injected gas (0.9‰ +/- 0.9‰). Four samples collected from the Olla 2800' sand produced CO₂-rich gas with δ¹³C-CO₂ values (average 9.9‰) much lower than average (pre-injection) conditions (+15.9‰, average of sands located stratigraphically below the 2800' sand in the Olla Field) and at much higher CO₂ concentrations (24.9 mole %) than average (7.6 mole %, average of sands located stratigraphically below the 2800' sand in the Olla Field), suggesting the presence of EOR-CO₂ and gas-phase trapping as a major storage mechanism. Using δ¹³C values of CO₂ and dissolved organic carbon (DIC), CO₂ dissolution was also shown to be a major storage mechanism for 3 of the 4 samples from the Olla 2800' sand. Minor storage mechanisms were shown to be migration, which only affected 2 samples (from 1 well), and some EOR-CO₂ conversion to microbial methane for 3 of the 4 Olla 2800' sand samples. Since methanogenesis was not shown to be a major storage mechanism for the EOR-CO₂ in the Olla Field (CO₂ injection did not stimulate methanogenesis), samples were examined from adjacent oil fields to determine the cause of the Olla microbial "hot-spot". Microbial methane was found in all oil fields sampled, but indicators of methanogenesis (e.g. alkalinity, high δ¹³C-DIC values) were the greatest in the Olla Field, and the environmental conditions (salinity, pH, temperature) were most ideal for microbial CO₂ reduction in the Olla field, compared to adjacent fields.
机译:煤层是地质二氧化碳(CO 2)隔离最有希望的储层之一,因为CO 2可以强烈吸附到有机物上并置换甲烷。然而,人们对于在煤层中封存二氧化碳的长期命运知之甚少。 Olla油田的“ 2800'沙”是路易斯安那州中北部的古新世—始新世Wilcox集团的一个含煤,油气生产的油藏。在1980年代,在提高采油率(EOR)项目中,该油田,特别是2800'砂被CO2淹没,注入停止后,在2800'砂中残留了9.0×10⁷m³的CO 2。这项研究利用了2800'沙地层上方,下方和内部的储层中共同生产的天然气,油和盐水中的同位素和地球化学示踪剂,确定了剩余EOR-CO 2的命运,研究了CO 2迁移,溶解,矿物捕集,气相捕集和对煤层的吸附,同时还检验了以前的假设,即EOR-CO 2可能已被微生物(减少CO 2的产甲烷菌)转化为甲烷,形成了微生物“热点”。在地层上可与2800'沙相比的储层进行了采样,但位于跨90公里样带的相邻油田中,对天然气组成,盐水化学和微生物活性的区域趋势进行了采样。还对EOR-CO 2的源场Black Lake场进行了采样,以确定注入气体的δ13 C-CO 2值(0.9‰+/- 0.9‰)。从Olla 2800'砂中收集到的四个样品产生的富含CO 2的气体的δ13 C-CO 2值(平均9.9‰)远低于平均(注入前)条件(+ 15.9‰,地层中低于2800'砂的平均水平)。 (Olla油田)的CO2浓度(24.9摩尔%)高于平均水平(7.6摩尔%,Olla油田地层以下2800'砂的平均水平),表明存在EOR-CO2和气相捕集作为主要的存储机制。使用δ13 C的CO 2值和溶解的有机碳(DIC),对于Olla 2800'砂中的4个样品中的3个,CO 2的溶解也是主要的存储机理。已显示出次要的存储机制是迁移,仅影响了2个样品(来自1口井),并且对4个Olla 2800'砂样品中的3个进行了EOR-CO 2转化为微生物甲烷的转化。由于在Olla油田中甲烷生成未显示为EOR-CO 2的主要储藏机制(注入CO 2不会刺激甲烷生成),因此对邻近油田的样品进行了检查,以确定Olla微生物“热点”的原因。在所有采样的油田中都发现了微生物甲烷,但是甲烷生成的指标(例如碱度,高的δ13 C-DIC值)在奥拉油田中最大,并且环境条件(盐度,pH,温度)最适合减少微生物CO 2在Olla字段中,与相邻字段相比。

著录项

  • 作者

    Shelton Jenna Lynn;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号