首页> 外文OA文献 >CRITICAL BEHAVIOR OF AN IGNITION MODEL IN CHEMICAL COMBUSTION.
【2h】

CRITICAL BEHAVIOR OF AN IGNITION MODEL IN CHEMICAL COMBUSTION.

机译:化学燃烧中点火模型的关键行为。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A model for the hot slab ignition problem is analyzed to determine critical conditions based on the parameters of the system. Activation energy asymptotics, a singular perturbation approach, is applied to the governing equation resulting in a Volterra integral equation of the second kind whose solution represents the temperature perturbation at the surface of the hot slab. The system is said to be supercritical for given parameter values when the temperature perturbation blows up in small finite time, an indication of ignition, or subcritical when the blow up time is large, indicating that heat loss effects overcome the hot slab ignition mechanisms. Comparison principles for integral equations are used to construct upper and lower solutions of the equation. The exact solution as well as the upper and lower solutions depend on two parameters ε, the Zeldovich number a measure of the heat release and λ, the scaled hot slab size. Upper and lower bounds on the transition region, delineating the super-critical from the sub-critical region, are derived based upon the lower and upper solution behavior. The product integration method is used to compute solutions of the Volterra equation for values of ε and λ in the transition region. The computations indicate that a critical curve, λ(c) lying between the analytic bounds, exists.
机译:分析了热板点火问题的模型,以便根据系统参数确定关键条件。激活能渐近,一种奇异摄动方法,被应用到控制方程,从而产生第二类Volterra积分方程,其解表示热板表面的温度摄动。当温度扰动在有限的有限时间内爆炸时,对于给定的参数值,该系统是超临界的,这是着火的迹象;在爆炸时间较大时,该系统是亚临界的,这表明热量损失效应克服了热板的着火机理。积分方程的比较原理用于构造方程的上下解。确切的解以及上下解都取决于两个参数ε,Zeldovich数是放热的量度,而λ是缩放后的热坯尺寸。基于下限和上限解决方案行为,可以得出过渡区域的上界和下界(从子临界区划出了超临界值)。乘积积分法用于计算过渡区域中ε和λ值的Volterra方程的解。计算表明存在一条位于分析边界之间的临界曲线λ(c)。

著录项

  • 作者

    TONELLATO PETER JOHN.;

  • 作者单位
  • 年度 1985
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号