首页> 外文OA文献 >Multi-Sensor Vegetation Index and Land Surface Phenology Earth Science Data Records in Support of Global Change Studies: Data Quality Challenges and Data Explorer System
【2h】

Multi-Sensor Vegetation Index and Land Surface Phenology Earth Science Data Records in Support of Global Change Studies: Data Quality Challenges and Data Explorer System

机译:支持全球变化研究的多传感器植被指数和地表物候地球科学数据记录:数据质量挑战和数据浏览器系统

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Synoptic global remote sensing provides a multitude of land surface state variables. The continuous collection, for more than 30 years, of global observations has contributed to the creation of a unique and long term satellite imagery archive from different sensors. These records have become an invaluable source of data for many environmental and global change related studies. The problem, however, is that they are not readily available for use in research and application environment and require multiple preprocessing. Here, we looked at the daily global data records from the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS), two of the most widely available and used datasets, with the objective of assessing their quality and suitability to support studies dealing with global trends and changes at the land surface. Findings show that clouds are the major data quality inhibitors, and that the MODIS cloud masking algorithm performs better than the AVHRR. Results show that areas of high ecological importance, like the Amazon, are most prone to lack of data due to cloud cover and aerosols leading to extended periods of time with no useful data, sometimes months. While the standard approach to these challenges has been compositing of daily images to generate a representative map over a preset time periods, our results indicate that preset compositing is not the optimal solution and a hybrid location dependent method that preserves the high frequency of these observations over the areas where clouds are not as prevalent works better. Using this data quality information the Vegetation Index and Phenology (VIP) Laboratory at The University of Arizona produced over 30 years of seamless sensor independent record of vegetation indices and land surface phenology metrics. These data records consist of 0.05-degree resolution global images for daily, 7-days, 15-days and monthly temporal frequency. These sort of remote sensing based products are normally made available through the internet by large data centers, like the Land Processes Distributed Active Archive Center (LP DAAC), however, in this project an online tool, the VIP Data Explorer, was developed to support the visualization, exploration, and distribution of these Earth Science Data Records (ESDRs) keeping it closer to the data generation center which provides a more active data support and distribution model. This web application has made it possible for users to explore and evaluate the products suite before download and use.
机译:概要全球遥感提供了大量的土地表面状态变量。 30多年来,不断收集全球观测资料,这有助于从不同的传感器创建独特的长期卫星影像档案。这些记录已成为许多与环境和全球变化相关的研究的宝贵数据来源。但是,问题在于它们不容易在研究和应用环境中使用,并且需要多次预处理。在这里,我们查看了来自最超高分辨率辐射仪(AVHRR)和中等分辨率成像光谱仪(MODIS)(这两个最广泛使用和使用的数据集)的每日全球数据记录,目的是评估其质量和适用性。支持研究全球趋势和地表变化的研究。结果表明,云是主要的数据质量抑制因素,并且MODIS云屏蔽算法的性能优于AVHRR。结果表明,由于云层覆盖和气溶胶导致较长时间的无用数据,有时甚至数月之久,像亚马逊河这样具有高度生态重要性的地区最容易缺少数据。虽然应对这些挑战的标准方法是合成每日图像以在预设时间段内生成代表性地图,但我们的结果表明预设合成不是最佳解决方案,而是一种依赖于位置的混合位置方法,可以在较高的频率范围内保留这些观测值的高频率云较不流行的区域效果更好。利用这些数据质量信息,亚利桑那大学的植被指数和物候(VIP)实验室生产了30多年的无缝传感器独立记录,包括植被指数和地表物候指标。这些数据记录包括每天,7天,15天和每月时间频率的0.05度分辨率全局图像。这类基于遥感的产品通常是由大型数据中心通过互联网提供的,例如土地过程分布式主动存档中心(LP DAAC),但是,在此项目中,开发了一种在线工具VIP Data Explorer来支持这些地球科学数据记录(ESDR)的可视化,探索和分布,使其更靠近数据生成中心,从而提供了更活跃的数据支持和分布模型。该Web应用程序使用户可以在下载和使用之前浏览和评估产品套件。

著录项

  • 作者

    Barreto-Munoz Armando;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号