首页> 外文OA文献 >Multi-objective fuzzy regression applied to the calibration of conceptual rainfall-runoff models
【2h】

Multi-objective fuzzy regression applied to the calibration of conceptual rainfall-runoff models

机译:多目标模糊回归在降雨径流概念模型校正中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The purpose of this research is (1) to develop a multi-objective fuzzy regression (MOFR) tool to overcome the shortcomings of the existing fuzzy regression approaches while keeping the good characteristics, and (2) to study systems with uncertain elements, using the example of rainfall-runoff process to illustrate the approach. Previous research has shown that fuzzy regression performs superior compared to statistical regression in some cases. On the other hand, fuzzy regression has also been criticized because it does not allow all data points to influence the estimated parameters, it is sensitive to data outliers, and the prediction intervals become wider as more data are collected. Here, several MOFR techniques are developed to overcome these problems by enabling the decision maker select a non-dominated solution based on the tradeoff between data outliers and prediction vagueness. It is shown that MOFR provides superior results to existing fuzzy regression techniques, and the existing fuzzy regression approaches and classical least squares regression are specific cases of the MOFR framework. The methodology is illustrated with examples from rainfall-runoff modeling, more specifically, conceptual rainfall-runoff (CRR) models are analyzed here. One of the main problems in CRR modeling is dealing with the uncertainty associated with the model parameters which is related to data and/or model structure. A fuzzy CRR (FCRR) framework is proposed herein where every element of the CRR is assumed to be uncertain, taken here as fuzzy. Parameter calibration of FCRR models using newly developed fuzzy regression techniques is also investigated. Applications are provided for a linear CRR model, the experimental two-parameter (TWOPAR) and the six-parameter (SIXPAR) models. The major findings can be summarized as follows: (1) FCRR enables the decision maker to gain insight about the CRR model sensitivity to uncertainty of the model elements, (2) using MOFR for the calibration of FCRR leads to non-convex, constrained, non-linear optimization problems, (3) fuzzy least squares regression model yields to more stable parameter estimates than the non-fuzzy regression model, (4) the methodology is applicable to any dynamic system with discrete modes.
机译:这项研究的目的是(1)开发一种多目标模糊回归(MOFR)工具,以克服现有模糊回归方法的缺点,同时保持良好的特性;(2)研究具有不确定元素的系统,使用以降雨径流过程为例来说明这一方法。先前的研究表明,在某些情况下,模糊回归的性能优于统计回归。另一方面,模糊回归也受到批评,因为它不允许所有数据点都影响估计的参数,它对数据离群值敏感,并且随着收集更多数据,预测间隔变得越来越宽。在此,开发了几种MOFR技术来克服这些问题,从而使决策者能够基于数据离群值和预测模糊性之间的折衷选择一个非支配的解决方案。结果表明,MOFR提供了优于现有模糊回归技术的结果,并且现有模糊回归方法和经典最小二乘回归是MOFR框架的特例。通过降雨径流建模的示例说明了该方法,更具体地说,此处分析了概念性降雨径流(CRR)模型。 CRR建模中的主要问题之一是处理与与数据和/或模型结构相关的模型参数相关的不确定性。在此提出了模糊CRR(FCRR)框架,其中CRR的每个元素都被假定为不确定的,这里将其视为模糊的。还研究了使用最新开发的模糊回归技术对FCRR模型进行参数校准。提供了线性CRR模型,实验两参数(TWOPAR)和六参数(SIXPAR)模型的应用程序。主要发现可归纳如下:(1)FCRR使决策者能够洞悉CRR模型对模型元素不确定性的敏感性;(2)使用MOFR进行FCRR校准会导致非凸,受约束,非线性优化问题;(3)模糊最小二乘回归模型比非模糊回归模型产生的参数估计更稳定;(4)该方法适用于任何具有离散模式的动态系统。

著录项

  • 作者

    Ozelkan Ertunga Cem 1970-;

  • 作者单位
  • 年度 1997
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号