首页> 外文OA文献 >STUDIES OF ION DISSOCIATION KINETICS AND MECHANISMS BY SURFACE-INDUCED DISSOCIATION AND INFRARED MULTI-PHOTON DISSOCIATION/SOFT-LANDING
【2h】

STUDIES OF ION DISSOCIATION KINETICS AND MECHANISMS BY SURFACE-INDUCED DISSOCIATION AND INFRARED MULTI-PHOTON DISSOCIATION/SOFT-LANDING

机译:表面诱导离解和红外多光子离解/软着陆研究离子离解动力学和机理

摘要

This dissertation presents dissociation mechanism and dissociation kinetics studies of gas-phase ions using mass spectrometry (MS). Dissociation of a gas-phase ion is related to its fundamental properties such as composition and structure. However, the detailed processes, internal energy deposition during ion activation as well as the mechanism of dissociation, are not fully known. In the present work, ion structural studies from which mechanisms can be inferred were performed using infrared multiphoton dissociation (IRMPD) spectroscopy, soft-landing, IR spectroscopy, and quantum chemical calculations. Kinetics studies involved instrument modification to add surface-induced dissociation (SID) capability and peak shape analysis. Structural studies were performed to determine dissociation mechanisms. The b₂⁺ ion from AGG is an oxazolone structure as indicated by the IRMPD spectrum and quantum chemical calculations. Protonated 4-ethoxymethylene-2-phenyl-2-oxazolin-5- one is also an oxazolone-type structure, while protonated cyclo-AG is a diketopiperazine structure. Soft-landing experiments were carried out to corroborate IRMPD results. Soft-landed protonated cyclo-AG and protonated 4-ethoxymethylene-2-phenyl-2- oxazolin-5-one underwent neutralization and retained their structures. The soft-landed b₂⁺ ion of AGG showed evidence of ring opening and conversion into a linear structure. The modified matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometers with SID capability were used to study fast dissociation kinetics (sub-microsecond dissociation). Silicon nanoparticle assisted laser desorption/ionization (SPALDI) allows the study of small molecule dissociation kinetics for ions without the matrix interference observed in MALDI. Well characterized systems, such as, N(CH₃)₄⁺, N(CD₃)₄⁺, and substituted benzylpyridinium ions were used to confirm reliability of the peak shape analysis. Obtained dissociation rates, of submicrosecond order, are consistent with the known dissociation theories. Dissociation of fullerenes, C₆₀ and C₇₀, was also investigated with the SID method using a fluorocarbon self-assembled monolayer (FSAM) surface. Fullerene ions produced C(2n)⁺ fragments ion in the kinetic energy range of 150-300 eV. At higher than 400 eV, mass spectra showed additional small fragment ions composed of odd numbers of C units. Energy resolved MS/MS curves support parallel dissociation at high SID energies while peak shape analysis explains sequential dissociation at about 150 eV range. Instrument modification of a MALDI-TOF mass spectrometer with SID capability allowed successful studies of fast unimolecular dissociation kinetics of small ions and fullerenes.
机译:本文利用质谱技术对气相离子的离解机理和离解动力学进行了研究。气相离子的离解与其基本性质(例如组成和结构)有关。但是,详细的过程,离子活化过程中的内部能量沉积以及离解机理尚不完全清楚。在目前的工作中,可以使用红外多光子离解(IRMPD)光谱,软着陆,IR光谱和量子化学计算来进行离子结构研究,从中可以推断出机理。动力学研究涉及仪器修饰,以增加表面诱导解离(SID)能力和峰形分析。进行结构研究以确定解离机理。如IRMPD光谱和量子化学计算所示,来自AGG的b 2+离子是恶唑酮结构。质子化的4-乙氧基亚甲基-2-苯基-2-恶唑啉-5-也是恶唑酮型结构,而质子化的环AG是二酮哌嗪结构。进行了软着陆实验以证实IRMPD结果。对软着陆的质子化环-AG和质子化的4-乙氧基亚甲基-2-苯基-2-恶唑啉-5-酮进行中和并保留其结构。 AGG的软着陆b 2+离子显示出开环和转化为线性结构的证据。具有SID功能的改进的基质辅助激光解吸/电离(MALDI)飞行时间(TOF)质谱仪用于研究快速离解动力学(亚微秒解离)。硅纳米粒子辅助的激光解吸/电离(SPALDI)可以研究离子的小分子解离动力学,而无需在MALDI中观察到基质干扰。良好表征的系统,例如N(CH 3)3,N(CD 3)3和取代的苄基吡啶鎓离子被用于确认峰形分析的可靠性。获得的亚微秒级解离速率与已知的解离理论一致。还使用碳氟化合物自组装单层(FSAM)表面,通过SID方法研究了富勒烯C3和C3的解离。富勒烯离子在150-300 eV的动能范围内产生C(2n)⁺碎片离子。在高于400 eV的条件下,质谱显示出由奇数个C单元组成的其他小碎片离子。能量分辨的MS / MS曲线支持高SID能量下的平行解离,而峰形分析说明了在约150 eV范围内的顺序解离。带有SID功能的MALDI-TOF质谱仪的仪器修改允许成功研究小离子和富勒烯的快速单分子解离动力学。

著录项

  • 作者

    Yoon Sung Hwan;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号