首页> 外文OA文献 >Associative memories, stochastic activity networks and their application to sensor validation systems of nuclear power plants
【2h】

Associative memories, stochastic activity networks and their application to sensor validation systems of nuclear power plants

机译:联想记忆,随机活动网络及其在核电厂传感器验证系统中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper, the problem of designing an advanced sensor validation system (SVS) which is robust and fault-tolerant under faulty conditions is considered. Associative memories, which provide robust pattern recognition are investigated as an information processing technology that can be applied to sensor validation. Studies of Binary Associative Memories (BAM) and Continuous Associative Memories (CAM) yield many results including (1) the stability condition of exemplars and spurious memories in BAMs, (2) the formula of choosing diagonal weights and bias that eliminates spurious memories most effectively in BAMs, (3) the convergence theory of CAMs that have asymmetric weight matrix with non-zero diagonal elements and non-monotonically increasing activation functions, (4) the energy function that explores the convergence behavior of CAMs, and (5) the hybrid learning algorithm that reduces spurious memories effectively in CAMs. The concept of performability is introduced to the evaluation of SVS. A set of important performability variables is introduced. Stochastic Activity Networks are used as a modeling tool to evaluate the performability of SVS. An illustration example, the evaluation of the pressurizer SVS of a PWR, is provided.
机译:本文考虑了设计一种先进的传感器验证系统(SVS)的问题,该系统在故障条件下具有鲁棒性和容错性。提供可靠模式识别的关联存储器已被研究为可应用于传感器验证的信息处理技术。对二元联想记忆(BAM)和连续联想记忆(CAM)的研究得出许多结果,包括(1)BAM中样例和虚假记忆的稳定性条件,(2)选择对角权重和偏向的公式可以最有效地消除虚假记忆在BAM中,(3)具有不对称权重矩阵且对角元素为非零且非单调递增的激活函数的CAM的收敛理论,(4)探索CAM的收敛行为的能量函数,(5)混合学习算法可有效减少CAM中的虚假记忆。将可执行性的概念引入到SVS的评估中。介绍了一组重要的性能变量。随机活动网络用作评估SVS性能的建模工具。提供了一个示例示例,即PWR增压器SVS的评估。

著录项

  • 作者

    Shen Bin 1967-;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号