首页> 外文OA文献 >Nonlinear interactions in mixing layers and compressible heated round jets.
【2h】

Nonlinear interactions in mixing layers and compressible heated round jets.

机译:混合层和可压缩加热圆形喷嘴中的非线性相互作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The nonlinear interactions between a fundamental instability mode and both its harmonics and the changing mean flow are studied using the weakly nonlinear stability theory of Stuart and Watson, and numerical solutions of coupled nonlinear partial differential equations. The first part of this work focuses on incompressible cold (or isothermal; constant temperature throughout) mixing layers, and for these, the first and second Landau constants are calculated as functions of wavenumber and Reynolds number. It is found that the dominant contribution to the Landau constants arises from the mean flow changes and not from the higher harmonics. In order to establish the range of validity of the weakly nonlinear theory, the weakly nonlinear and numerical solutions are compared and the limitation of each is discussed. At small amplitudes and at low-to-moderate Reynolds numbers, the two results compare well in describing the saturation of the fundamental, the distortion of the mean flow, and the initial stages of vorticity roll-up. At larger amplitudes, the interaction between the fundamental, second harmonic, and the mean flow is strongly nonlinear and the numerical solution predicts flow oscillations, whereas the weakly nonlinear theory yields saturation. Beyond the region of exponential growth, the instability waves evolve into a periodic array of vortices. In the second part of this work, the weakly nonlinear theory is extended to heated (or nonisothermal mean temperature distribution) subsonic round jets where quadratic and cubic nonlinear interactions are present, and the Landau constants also depend on jet temperature ratio, Mach number and azimuthal mode number. Under exponential growth and nonlinear saturation, it is found that heating and compressibility suppress the growth of instability waves, that the first azimuthal mode is the dominant instability mode, and that the weakly nonlinear solution describes the early stages of the roll-up of an axisymmetric shear layer. The receptivity of a typical jet flow to pulse type input disturbances is also studied by solving the initial value problem and then examining the behavior of the long-time solution. The excitation produces a wave packet which consists of a few oscillations and is convected downstream by the mean flow. The magnitude of the disturbance in the jet depends on the location of the excitation and there is an optimum position at which little energy input will produce large perturbations. It is found that in order to generate the largest perturbations at any point in the jet, the disturbance should be deposited into the flow at a point where the phase velocity of the most amplified wave equals the fluid velocity (of the base flow).
机译:使用Stuart和Watson的弱非线性稳定性理论,以及耦合的非线性偏微分方程的数值解,研究了基本不稳定性模式与其谐波和不断变化的平均流量之间的非线性相互作用。这项工作的第一部分着眼于不可压缩的冷(或等温;整个温度都是恒定的)混合层,为此,将第一和第二Landau常数计算为波数和雷诺数的函数。发现对朗道常数的主要贡献来自平均流量变化,而不是来自高次谐波。为了确定弱非线性理论的有效性范围,比较了弱非线性和数值解,并讨论了每种方法的局限性。在小振幅和低到中等的雷诺数下,这两个结果在描述基波饱和度,平均流的畸变和涡旋累积的初始阶段方面具有很好的比较。在较大的振幅下,基波,二次谐波和平均流量之间的相互作用是强非线性的,数值解法可以预测流量的振荡,而弱非线性理论则产生饱和。在指数增长区域之外,不稳定波演变成周期性的涡旋阵列。在这项工作的第二部分中,弱非线性理论扩展到存在二次和三次非线性相互作用的加热(或非等温平均温度分布)亚音速圆形射流,并且朗道常数还取决于射流温度比,马赫数和方位角模式编号。在指数增长和非线性饱和下,发现加热和可压缩性抑制了不稳定性波的增长,第一个方位角模式是主要的不稳定性模式,而弱非线性解决方案则描述了轴对称累积的早期阶段。剪切层。通过解决初值问题,然后研究长时间解的行为,还研究了典型喷射流对脉冲型输入干扰的接受性。激发产生了一个由几个振荡组成的波包,并被平均流向下游对流。射流中的扰动幅度取决于激发的位置,并且存在一个最佳位置,在该位置上很少的能量输入将产生较大的扰动。已经发现,为了在射流的任何点上产生最大的扰动,应在最大放大波的相速度等于(基本流的)流体速度的点处将扰动沉积到流中。

著录项

  • 作者

    Jarrah Yousef Mohd.;

  • 作者单位
  • 年度 1989
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号