首页> 外文OA文献 >Analysis of constant head borehole infiltration tests in the vadose zone
【2h】

Analysis of constant head borehole infiltration tests in the vadose zone

机译:渗流带恒头井眼渗透试验分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many environmental studies of water transport through the vadose zone require a field determination of saturated hydraulic conductivity. The purpose of this dissertation is to analyze the reliability of existing methods to determine saturated hydraulic conductivity, K(s), in the vadose zone from constant head borehole infiltration test data. In methods developed by the U. S. Bureau of Reclamation [USBRI, and in lesser known ones, K(s) is computed knowing the height of water in the borehole, length open to the formation, borehole radius, distance above the water table, and steady flow rate. The mathematical formulas on which these methods rest are derived on the basis of numerous simplifying assumptions. The free surface approach is used as the conceptual model of flow from a borehole. Results of numerical simulations are used to compare with the analytical solutions. Simulations with a steady-state finite element computer program, FREESURF, show that the Nasberg-Terletskata solution most closely approximates flow from a borehole with the free surface approach. The influence of capillarity is simulated for saturated-unsaturated porous media in four soils using a finite element computer program, FLUMP, and an integrated finite difference program, TRUST. Contrary to what one finds with the free surface approach, only a small portion of the flow field near the borehole is saturated at steady-state and the cross sectional area normal to the flow path increases with depth below the borehole. For deep water table conditions in fine textured soils, values of K(s) computed using the USBR open-hole equations may be more than 160% greater than the true values; and in coarse sands the USBR solutions may under-estimate the actual value by more than 35%. Mostly because of the influence of unsaturated soil properties there is no unique relationship between K(s), borehole conditions, and steady flow rate, as implied in the analytical solutions. Steady-state simulations demonstrate that existing solutions for borehole infiltration tests in anisotropic or nonuniform soils may also lead to significant errors. Time dependent simulations show that the time to reach a steady flow rate may be more than several days in very dry, low-permeable soils. The time to reach a steady flow rate can be significantly reduced by decreasing the open area between the borehole and formation while increasing the height of water in the borehole. Two methods are proposed to minimize the time, water volume requirements, and cost of conducting constant head borehole infiltration tests. Simulations show that a plot of the inverse of flow rate versus logarithm of time departs from a straight line after about 80% of the steady rate is achieved for various soil and borehole conditions; the steady rate is approximately 0.8 times the rate at the break in slope. In the second method flow rate is plotted versus the inverse of the square root of time and the steady rate is estimated within about 10% by linear extrapolation of early time measurements. USBR field data generally support this linear relationship. Two empirical equations are proposed to compute K(s). The first is applicable for a range of borehole conditions and approximately accounts for capillary effects with a single parameter. The second applies if the height of water in the borehole is I meter, and is based on the time to reach 80% of the steady rate and saturation deficit of the field soil.
机译:关于水通过渗流带运输的许多环境研究都需要现场确定饱和导水率。本文的目的是分析从恒定顶头井眼渗透测试数据确定渗流区内饱和导水率K(s)的现有方法的可靠性。在美国填海局[USBRI]开发的方法中,以及在鲜为人知的方法中,K(s)的计算是在知道井眼中水的高度,对地层敞开的长度,井眼半径,地下水位以上的距离以及稳定的情况下进行的。流量。这些方法所依据的数学公式是根据众多简化假设得出的。自由表面方法被用作来自井眼的流动的概念模型。数值模拟的结果用于与解析解进行比较。使用稳态有限元计算机程序FREESURF进行的仿真表明,采用自由表面方法,Nasberg-Terletskata解决方案最接近地模拟了来自井眼的流量。使用有限元计算机程序FLUMP和集成的有限差分程序TRUST,对四种土壤中饱和-不饱和多孔介质的毛细作用影响进行了模拟。与使用自由表面方法发现的结果相反,在井眼附近,只有一小部分流场在稳态下饱和,并且垂直于流路的横截面面积随井眼以下的深度而增加。对于细纹理土壤中的深水条件,使用USBR裸眼方程计算的K(s)值可能比真实值大160%以上;在粗砂中,USBR解决方案可能会将实际价值低估35%以上。主要是由于非饱和土壤特性的影响,在分析溶液中暗示,在K(s),钻孔条件和稳定流速之间没有唯一的关系。稳态模拟表明,在各向异性或非均匀土壤中进行井眼渗透测试的现有解决方案也可能导致重大误差。与时间有关的模拟表明,在非常干燥,低渗透性的土壤中达到稳定流速的时间可能会超过几天。通过减小井眼与地层之间的开口面积,同时增加井眼中水的高度,可以显着减少达到稳定流速的时间。提出了两种方法来最小化时间,水量要求和进行恒定水头井眼渗透测试的成本。模拟表明,在各种土壤和井眼条件下,达到约80%的稳定速率后,流量与时间的对数的关系曲线与直线成反比。稳定率约为斜率折断率的0.8倍。在第二种方法中,绘制了流速与时间平方根的倒数,并通过早期时间测量值的线性外推法估算出稳定流速在约10%内。 USBR现场数据通常支持此线性关系。提出了两个经验方程式来计算K(s)。第一种适用于一定范围的井眼条件,并通过单个参数大致考虑了毛细管效应。如果井眼中的水高为1米,则适用第二种方法,其依据是达到田间土壤稳定速率和饱和度不足80%的时间。

著录项

  • 作者

    Stephens Daniel Bruce.;

  • 作者单位
  • 年度 1979
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号