首页> 外文OA文献 >Agent-based heuristics for large, multiple-mode, resource-constrained project scheduling problems
【2h】

Agent-based heuristics for large, multiple-mode, resource-constrained project scheduling problems

机译:基于代理的启发式解决方案,用于大型,多模式,资源受限的项目计划问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this dissertation we address large, multiple-mode, resource-constrained project scheduling problems with the objective of minimizing makespan. After noting that projects often fail and new research is needed, we provide the formal definition of the resource-constrained project scheduling problem and review the existing literature. We then introduce a new model based on digital electronics. We conceptualize our model using agent technology and discuss it as extension of existing models with more representational power. We also describe how our model supports distributed planning. After implementing our model, we conduct two computational studies. In the first, we develop two agent types: basic and enhanced where the enhanced agent is more sophisticated in selecting an activity execution mode. We apply these agents to the scheduling of 500 instances of a small project originally published by Maroto and Tormos (1994). We evaluate the performance of the agents in conjunction with their use of eight heuristic prioritization rules: shortest and longest processing time, fewest and most immediate successors, smallest and greatest resource demand, earliest start time, and earliest due date. Our results show that enhanced agents consistently outperform basic agents while the results regarding priority rules were mixed. In the second computational study, we further develop our enhanced agents by providing still more sophisticated mode selection. We also evaluate static versus dynamic prioritization and two more priority rules: shortest and longest duration critical path. For this study we generated 2500, 5000, 7500, and 10000 activity projects. For each of these, we generated networks with complexities of 1.5, 1.8, and 2.1. For these twelve networks, we generated 20 problem instances for every possible combination of resource factor = 0.25, 0.50, 0.75, 1.0 and resource strength = 0.2, 0.5, 0.8. We graphically evaluated scheduling performance, computation times, and failure rates and conducted an extensive statistical analysis. We found that enhanced agents using shortest processing time priority consistently produced the shortest schedules. However, these agents fail more often than basic agents. We found that dynamic prioritization requires more computation time, but provides little improvement in scheduling performance. We conclude this work with suggestions for future research.
机译:在本文中,我们解决了大型,多模式,资源受限的项目调度问题,目的是最大程度地缩短工期。在注意到项目经常失败并且需要新的研究之后,我们提供了资源受限的项目调度问题的正式定义,并回顾了现有文献。然后,我们介绍一种基于数字电子学的新模型。我们使用代理技术对模型进行概念化,并讨论它是对现有模型的扩展,具有更大的代表性。我们还将描述我们的模型如何支持分布式计划。实施模型后,我们进行了两次计算研究。首先,我们开发两种代理类型:基本代理和增强代理,其中增强型代理在选择活动执行模式方面更为复杂。我们将这些代理应用于Maroto和Tormos(1994)最初发布的一个小项目的500个实例的调度中。我们结合使用八个启发式优先级规则来评估代理的性能:最短和最长的处理时间,最少和最直接的后继,最小和最大的资源需求,最早的开始时间以及最早的到期日期。我们的结果表明,增强型代理始终优于基本代理,而有关优先级规则的结果则好坏参半。在第二项计算研究中,我们通过提供更复杂的模式选择来进一步开发增强型代理。我们还将评估静态优先级与动态优先级,以及另外两个优先级规则:最短和最长持续时间关键路径。对于本研究,我们生成了2500、5000、7500和10000个活动项目。对于每一个,我们生成的网络的复杂度分别为1.5、1.8和2.1。对于这十二个网络,对于资源因子= 0.25、0.50、0.75、1.0和资源强度= 0.2、0.5、0.8的每种可能组合,我们生成了20个问题实例。我们以图形方式评估了调度性能,计算时间和故障率,并进行了广泛的统计分析。我们发现,使用最短处理时间优先级的增强型代理始终会产生最短的计划。但是,这些代理比基本代理更容易失败。我们发现动态优先级排序需要更多的计算时间,但调度性能却几乎没有改善。我们在完成这项工作的同时为未来的研究提供了建议。

著录项

  • 作者

    Knotts Gary Wayne 1962-;

  • 作者单位
  • 年度 1998
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号