首页> 外文OA文献 >Assessment of Roof Stability in a Room and Pillar Coal Mine in the U.S. Using Three-Dimensional Distinct Element Method
【2h】

Assessment of Roof Stability in a Room and Pillar Coal Mine in the U.S. Using Three-Dimensional Distinct Element Method

机译:使用三维离散元方法评估美国房间和支柱煤矿的屋顶稳定性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Roof falls and accumulation of dangerous gasses are the most common hazards in any underground coal mine. Different mechanisms can jeopardize the stability of the roof in underground excavations and successful roof control can only be obtained if the failure mechanism is identified and understood properly. The presence of discontinuities, the inherent variability of the rock mass and discontinuity properties, and the uncertainties associated with directions and magnitudes of the in-situ stress makes the rock engineering problems challenging. The numerical modeling can assist the ground control engineers in designing and evaluating the stability of the underground excavations. If extensive geological and geotechnical data are available, then detailed predictions of deformation, stress and stability can be accomplished by performing numerical modeling. If not, still the numerical modeling can be used to perform parametric studies to gain insight into the possible ranges of responses of a system due to likely ranges of various parameters. The parametric studies can help to identify the key parameters and their impact on stability of underground excavations. The priorities of the material testing and site investigation can be set based on the selected key parameters from parametric studies. An underground coal mine in western Pennsylvania is selected as a case study mine to investigate the underlying causes of roof falls at this mine. The immediate roof at the case study mine consists of laminated silty shale, shale, or sandstone that changes from area to area, and the floor is shale or soft fireclay. This study was mainly focused in the stability analysis of the roofs with the laminated silty shale rock type, where the majority of roof falls had taken place in the roof with this type of roof material. Extensive laboratory tests were performed on the core samples obtained from the case study mine to estimate the intact rock and discontinuity properties of the materials that occur in large extent at the selected interest area of the case study mine. In this research, the three-dimensional distinct element method was used to investigate the stability of the roof in an underground room-and-pillar coal mine. The implemented technique was able to accurately capture the failure of the major discontinuities and rock masses which consist of intact rock and minor discontinuities. In order to accurately replicate the post failure behavior of the rock layers in the immediate roof area, the strain-softening material constitutive law was applied to this region. Extensive numerical parametric studies were conducted to investigate the effect of different parameters such as the variation of immediate roof rock mass strength properties, variation of discontinuity mechanical properties, orientations and magnitudes of the horizontal in-situ stresses, and the size of pillars and excavations on stability of the excavations. The distribution of post failure cohesion along with other measures such as accumulated plastic shear strain, distribution of Z-displacements at the roofline, failure state (joint slip and tensile failure) and displacement (normal and shear displacements) of discontinuities were used to accurately assess the roof stability in this case study. The research conducted in this dissertation showed that the bedding planes play an important role on the behavior of roof in underground excavations. Therefore, an appropriate numerical modeling technique which incorporates the effect of discontinuities should be employed to simulate the realistic behavior of the discontinuous rock masses such as the layered materials in roof strata of the underground coal mines. The three-dimensional distinct element method used in this research showed the clear superiority of this technique over the continuum based methods.
机译:屋顶塌陷和危险气体的积累是任何地下煤矿中最常见的危害。在地下挖掘中,不同的机制可能会破坏屋顶的稳定性,只有正确识别和理解破坏机制,才能获得成功的屋顶控制。不连续性的存在,岩体的固有变异性和不连续性,以及与原地应力的方向和大小相关的不确定性,使岩石工程学面临挑战。数值模拟可以帮助地面控制工程师设计和评估地下基坑的稳定性。如果可以获得大量的地质和岩土数据,则可以通过执行数值建模来完成变形,应力和稳定性的详细预测。如果不是这样,由于各种参数的可能范围,数值建模仍然可以用于执行参数研究,以深入了解系统响应的可能范围。参数研究可以帮助确定关键参数及其对地下基坑稳定性的影响。可以根据从参数研究中选择的关键参数来设置材料测试和现场调查的优先级。选择了宾夕法尼亚州西部的一个地下煤矿作为案例研究矿井,以调查该矿井顶板塌陷的潜在原因。案例研究矿井的直接屋顶由层状粉质页岩,页岩或砂岩组成,随区域变化而变化,地板为页岩或软粘土。这项研究主要集中在粉质粉质页岩类型屋顶的稳定性分析中,其中大多数屋顶跌落发生在使用这种类型屋顶材料的屋顶中。对从案例研究矿山获得的岩心样本进行了广泛的实验室测试,以估计在案例研究矿山的选定兴趣区域内大量发生的材料的完整岩石和不连续性。在这项研究中,三维三维离散元法被用来研究地下室和柱状煤矿顶板的稳定性。所实施的技术能够准确地捕获主要不连续性和包括完整岩石和次要不连续性在内的岩体的破坏。为了准确地复制紧邻屋顶区域中的岩石层的破坏后行为,将应变软化材料的本构律应用于该区域。进行了广泛的数值参数研究,以研究不同参数的影响,例如即时顶板岩体强度特性的变化,不连续力学特性的变化,水平现场应力的方向和大小以及柱子和基坑的尺寸等。开挖的稳定性。使用破坏后内聚力的分布以及其他措施(例如累积的塑性剪切应变,车顶线处的Z位移的分布,破坏状态(接头滑移和拉伸破坏)以及不连续的位移(法向位移和剪切位移))进行精确评估在此案例中,屋顶的稳定性。本文的研究表明,层理平面在地下开挖中对屋顶的行为起着重要的作用。因此,应该采用一种结合了不连续性影响的数值模拟技术来模拟不连续岩体的真实行为,例如地下煤矿屋顶层中的分层材料。本研究中使用的三维离散元方法显示了该技术相对于基于连续体的方法的明显优势。

著录项

  • 作者

    Sherizadeh Taghi;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号