首页> 外文OA文献 >Fixed planar holographic interconnects for optically implemented neural networks.
【2h】

Fixed planar holographic interconnects for optically implemented neural networks.

机译:用于光学实现的神经网络的固定平面全息互连。

摘要

In recent years there has been a great interest in neural networks, since neural networks are capable of performing pattern recognition, classification, decision, search, and optimization. A key element of most neural network systems is the massive number of weighted interconnections (synapses) used to tie relatively simple processing elements (neurons) together in a useful architecture. The inherent parallelism and interconnection capability of optics make it a likely candidate for the implementation of the neural network interconnection process. While there are several optical technologies worth exploring, this dissertation examines the capabilities and limitations of using fixed planar holographic interconnects in a neural network system. While optics is well suited to the interconnection task, nonlinear processing operations are difficult to implement in optics and better suited to electronic implementations. Therefore, a hybrid neural network architecture of planar interconnection holograms and opto-electronic neurons is a sensible approach to implementing a neural network. This architecture is analyzed. The interconnection hologram must accurately encode synaptic weights, have a high diffraction efficiency, and maximize the number of interconnections. Various computer generated hologram techniques are tested for their ability to produce the interconnection hologram. A new technique using the Gerchberg-Saxton process followed by a random-search error minimization produces the highest interconnect accuracy and highest diffraction efficiency of the techniques tested. The analysis shows that a reasonable size planar hologram has a capacity to connect 5000 neuron outputs to 5000 neuron inputs and that the bipolar synaptic weights can have an accuracy of approximately 5 bits. To demonstrate the concept of an opto-electronic neural network and planar holographic interconnects, a Hopfield style associative memory is constructed and shown to perform almost as well as an ideal system.
机译:近年来,由于神经网络能够执行模式识别,分类,决策,搜索和优化,因此人们对神经网络引起了极大的兴趣。大多数神经网络系统的关键要素是大量加权互连(突触),这些互连在有用的体系结构中将相对简单的处理元素(神经元)联系在一起。光学器件固有的并行性和互连能力使其成为实现神经网络互连过程的可能候选者。尽管有几项光学技术值得探索,但本文研究了在神经网络系统中使用固定平面全息互连的能力和局限性。尽管光学器件非常适合互连任务,但是非线性处理操作很难在光学器件中实现,并且更适合于电子实现。因此,平面互连全息图和光电神经元的混合神经网络体系结构是实现神经网络的明智方法。分析了这种架构。互连全息图必须准确地编码突触权重,具有高衍射效率并最大化互连数。测试了各种计算机生成的全息图技术产生互连全息图的能力。使用Gerchberg-Saxton工艺并随后最小化随机搜索误差最小化的新技术可产生所测试技术的最高互连精度和最高衍射效率。分析表明,合理大小的平面全息图具有将5000个神经元输出连接到5000个神经元输入的能力,并且双极突触权重的精度约为5位。为了演示光电神经网络和平面全息互连的概念,构建了一种Hopfield型关联存储器,并显示了与理想系统几乎相同的性能。

著录项

  • 作者

    Keller Paul Edwin.;

  • 作者单位
  • 年度 1991
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号