首页> 外文OA文献 >Some exact and approximate methods for large scale systems steady-state availability analysis.
【2h】

Some exact and approximate methods for large scale systems steady-state availability analysis.

机译:大规模系统稳态可用性分析的一些精确和近似方法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

System availability is the probability of the system being operable at instant t. Markov chains are a model used for system availability analysis. The exact analytical solution in terms of component failure rates and repair rates for steady-state system availability is complex to find solving the large numbers of simultaneous linear equations that result from the model. Although exact analytical solutions have been developed for series and parallel systems and for some other small size systems, they have not been developed for large scale general systems with n distinct components. Some methods for approximate analytical solutions have been suggested, but limitations on network types, over simplified states merge conditions and lack of predictions of approximation errors make these methods difficult to use. Markov state transition graphs can be classified as symmetric or asymmetric. A symmetric Markov graph has two-way transitions between each pair of communicating nodes. An asymmetric Markov graph has some pair(s) of communicating nodes with only one-way transitions. In this research, failure rates and repair rates are assumed to be component dependent only. Exact analytical solutions are developed for systems with symmetric Markov graphs. Pure series systems, pure parallel systems and general k out of n systems are examples of systems with symmetric Markov graphs. Instead of solving a large number of linear equations from the Markov model to find the steady-state system availability, it is shown that only algebraic operations on component failure rates and repair rates are necessary. In fact, for the above class of systems, the exact analytical solutions are relatively easy to obtain. Approximate analytical solutions for systems with asymmetric Markov graphs are also developed based on the exact solutions for the corresponding symmetric Markov graphs. The approximate solutions are shown to be close to the exact solutions for large scale and complex systems. Also, they are shown to be lower bounds for the exact solutions. Design principles to improve systems availability are derived from the analytical solutions for systems availability. Important components can be found easily with the iteration procedure and computer programs provided in this research.
机译:系统可用性是系统在时刻t运行的概率。马尔可夫链是用于系统可用性分析的模型。要找到求解模型所产生的大量联立线性方程的方法,就稳态系统可用性而言,就组件故障率和维修率而言,确切的分析解决方案非常复杂。尽管已经为串联和并联系统以及其他一些小型系统开发了精确的分析解决方案,但尚未为具有n个不同组件的大规模通用系统开发精确的分析解决方案。已经提出了一些近似解析解的方法,但是由于网络类型的限制,简化状态的合并条件以及缺乏近似误差的预测,使得这些方法难以使用。马尔可夫状态转移图可以分为对称或不对称。对称的马尔可夫图在每对通信节点之间具有双向转换。非对称马尔可夫图具有仅具有单向过渡的几对通信节点。在本研究中,假定故障率和维修率仅取决于组件。针对具有对称马尔可夫图的系统开发了精确的解析解决方案。纯串联系统,纯并联系统和n个系统中的第k个系统都是具有对称Markov图的系统的示例。结果表明,只需要对组件故障率和维修率进行代数运算,而不用从马尔可夫模型中求解大量线性方程式即可找到稳态系统的可用性。实际上,对于以上类型的系统,确切的分析解决方案相对容易获得。还基于相应的对称马尔可夫图的精确解,开发了具有非对称马尔可夫图的系统的近似解析解。所示的近似解与大型和复杂系统的精确解非常接近。同样,它们显示为精确解的下界。改善系统可用性的设计原理源自系统可用性的分析解决方案。通过本研究提供的迭代过程和计算机程序,可以轻松找到重要的组件。

著录项

  • 作者

    Chien Ying-Che;

  • 作者单位
  • 年度 1995
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号